a) Ta có: \(Q\left(x\right)=x^5+9+2x^2-4x^2-2x^3+3x\)
\(=x^5-2x^3+\left(2x^2-4x^2\right)+3x+9\)
\(=x^5-2x^3-2x^2+3x+9\)
a) Ta có: \(P\left(x\right)=x^5+2x^3-4x^3+x^2+4x+9\)
\(=x^5+\left(2x^3-4x^3\right)+x^2+4x+9\)
\(=x^5-2x^3+x^2+4x+9\)
b) Ta có: P(x)-Q(x)
\(=x^5-2x^3+x^2+4x+9-x^5+2x^3+2x^2-3x-9\)
\(=3x^2+x\)
c) Đặt M(x)=0
\(\Leftrightarrow\left(x-2019\right)\left(x+2020\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2019=0\\x+2020=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=-2020\end{matrix}\right.\)
Vậy: S={2019;-2020}