[Ôn thi vào 10]Bài 1: Cho biểu thức Pdfrac{sqrt{x}}{sqrt{x}+1}+dfrac{2sqrt{x}-1}{1-sqrt{x}}+dfrac{2x}{x-1} (với xge0 và xne1)a. Rút gọn biểu thức P.b. Tính giá trị của biểu thức P khi x4+2sqrt{3}.Bài 2:a. Viết phương trình đường thẳng d đi qua điểm Aleft(1;-2right) và song song với đường thẳng y2x-1.b. Giải hệ phương trình left{{}begin{matrix}dfrac{2}{x}+dfrac{3}{y}12dfrac{5}{x}+dfrac{2}{y}19end{matrix}right.Bài 3: Quãng đường AB đài 120 km. Một ô tô khởi hành từ A đến B, cùng lúc đó một xe máy...
Đọc tiếp
[Ôn thi vào 10]
Bài 1:
Cho biểu thức \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{2x}{x-1}\) (với \(x\ge0\) và \(x\ne1\))
a. Rút gọn biểu thức \(P\).
b. Tính giá trị của biểu thức \(P\) khi \(x=4+2\sqrt{3}\).
Bài 2:
a. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\left(1;-2\right)\) và song song với đường thẳng \(y=2x-1\).
b. Giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=12\\\dfrac{5}{x}+\dfrac{2}{y}=19\end{matrix}\right.\)
Bài 3:
Quãng đường AB đài 120 km. Một ô tô khởi hành từ A đến B, cùng lúc đó một xe máy khởi hành từ B về A với vận tốc nhỏ hơn vận tốc của ô tô là 24 km/h. Ô tô đến B được 50 phút thì xe máy về tới A. Tính vận tốc của mỗi xe.
Bài 4:
Cho phương trình \(x^2-2\left(m+2\right)x+3m+1=0\)
a. Chứng minh rằng phương trình luôn có nghiệm với mọi \(m\).
b. Gọi \(x_1,x_2\) là hai nghiệm của phương trình đã cho. Chứng minh rằng biểu thức \(M=x_1\left(3-x_2\right)+x_2\left(3-x_1\right)\) không phụ thuộc vào \(m\).
Bài 5:
Cho tam giác ABC nhọn (AB<AC), nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt dây BC tại D và cắt đường tròn (O) tại điểm thứ hai là E. Các tiếp tuyến với đường tròn (O) tại C và E cắt nhau tại N, tia CN và tia AE cắt nhau tại P. Gọi Q là giao điểm của hai đường thẳng AB và CE.
a. Chứng minh tứ giác AQPC nội tiếp một đường tròn.
b. Chứng minh EN//BC.