Có thể tìm được min của P chứ không thể tính ra được giá trị cụ thể của P (biểu thức P vẫn phụ thuộc x;y, cụ thể sau khi rút gọn \(P=2\left(x+y\right)-1\))
\(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\Leftrightarrow1+\dfrac{x}{1-x}+1+\dfrac{y}{1-y}=3\)
\(\Leftrightarrow3=\dfrac{1}{1-x}+\dfrac{1}{1-y}\ge\dfrac{4}{2-\left(x+y\right)}\)
\(\Leftrightarrow2-\left(x+y\right)\ge\dfrac{4}{3}\Rightarrow x+y\le\dfrac{2}{3}< 1\)
Cũng từ giả thiết:
\(\dfrac{x\left(1-y\right)+y\left(1-x\right)}{\left(1-x\right)\left(1-y\right)}=1\Leftrightarrow x+y-2xy=1-x-y+xy\)
\(\Leftrightarrow3xy=2\left(x+y\right)-1\)
Do đó:
\(P=x+y+\sqrt{\left(x+y\right)^2-3xy}=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)
\(P=x+y+\sqrt{\left(1-x-y\right)^2}=x+y+1-x-y=1\)
À tính được P, nãy xác định ngược dấu.