Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngọc hân
missing you =
21 tháng 4 2022 lúc 16:38

\(1.A=\sqrt{\sqrt{3}-\sqrt{1-\sqrt{12-2.\sqrt{12}.\sqrt{9}+9}}}=\sqrt{\sqrt{3}-\sqrt{1-\sqrt{\left(\sqrt{12}-\sqrt{9}\right)^2}}}=\sqrt{\sqrt{3}-\sqrt{1-\sqrt{12}+\sqrt{9}}}=\sqrt{\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=1\)

\(2.a;đk:\forall x;đặt:x^2=t\ge0\Rightarrow\dfrac{3}{t^2+t+1}+5=3t\left(t+1\right)\)

\(\Rightarrow\dfrac{3+5t^2+5t+5}{t^2+t+1}=3t\left(t+1\right)\Leftrightarrow5t^2+5t+8=3t\left(t+1\right)\left(t^2+t+1\right)\)

\(\Leftrightarrow\left(t-1\right)\left(t+2\right)\left(3t^2+3t+4>0\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\Rightarrow x=\pm1\\t=-2\left(loại\right)\end{matrix}\right.\)

\(b;\left\{{}\begin{matrix}2x^2-3xy+y^2=0\Leftrightarrow\left(x-y\right)\left(2x-y\right)=0\\3x^2+2xy-y^2-3x+y=2\left(3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\left(1\right)\\y=2x\left(2\right)\end{matrix}\right.\\3x^2+2xy-y^2-3x+y=2\left(3\right)\end{matrix}\right.\)

\(thế\left(1\right)và\left(2\right)\) \(vào\left(3\right)\Rightarrow\left(x;y\right)\)

\(B2;a;mx+y=2\Leftrightarrow y=2-mx\)

\(\Rightarrow\dfrac{x^2}{2}=2-mx\Leftrightarrow x^2+2mx-4=0\Rightarrow\Delta'=m^2+4>0\left(\forall m\right)\Rightarrowđpcm\)

\(b;\Rightarrow\left\{{}\begin{matrix}x1+x2=-2m\\x1.x2=-4\end{matrix}\right.\)  \(\Rightarrow A\left(x1;y1\right);B\left(x2;y2\right)\Leftrightarrow A\left(x1;2-mx1\right);B\left(x2;2-mx2\right)\)

\(\Rightarrow AB=\sqrt{\left(x1-x2\right)^2+\left(2-mx1-2+mx2\right)^2}=\sqrt{\left(x1-x2\right)^2+\left(mx1-mx2\right)^2}=\sqrt{\left(m^2+1\right)\left(x1-x2\right)^2}=\sqrt{\left(m^2+1\right)\left[\left(x1+x2\right)^2-4x1x2\right]}=\sqrt{\left(m^2+1\right)\left(4m^2+16\right)}\ge\sqrt{16}=4\Leftrightarrow m=0\)

\(b;;2\left(x-2\right)=\sqrt{2\left(x^2-x-1\right)}\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\4\left(x-2\right)^2=2\left(x^2-x-1\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=\dfrac{1}{2}\left(7-\sqrt{13}\right)\\x=\dfrac{1}{2}\left(7+\sqrt{13}\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{1}{2}\left(7+\sqrt{13}\right)\Rightarrow T=5\)

\(B3..\)

\(\dfrac{4b^2}{a-1}+\dfrac{5b^2}{b-2}=4\left(a-1\right)+\dfrac{4}{a-1}+8+5\left(b-2\right)+\dfrac{20}{b-2}+20\ge2\sqrt{4^2}+8+2\sqrt{5.20}+20=56\left(đpcm\right)\)

\(a,2x^2-\left(m+2\right)x-7+m^2=0\)

\(yêu\) \(cầu\Leftrightarrow\left\{{}\begin{matrix}2\left(-7+m^2\right)< 0\left(1\right)\\\left|x1\right|=\dfrac{1}{x2}\left(2\right)\\m>0\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{7}\\m>\sqrt{7}\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow-x1=\dfrac{1}{x2}\left(do:x1< 0\right)\Leftrightarrow x1.x2=-1\Leftrightarrow\dfrac{-7+m^2}{2}=-1\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\left(ktm\right)\Rightarrow m=\varnothing\)

\(c;x^2-xy+y^2=2\Leftrightarrow2x^2-2xy+2y^2-4=0\Leftrightarrow\left(x-y\right)^2+x^2+y^2-4=0\Leftrightarrow\left(x-y\right)^2=4-\left(x^2+y^2\right)\ge0\Rightarrow x^2+y^2\le4\)

\(\Rightarrow P\le4+xy=4+x^2+y^2-2=2+x^2+y^2\le2+4=6\Rightarrow maxP=6\)

\(dấu"="xayra\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-xy+y^2=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)\)

\(..x^2-xy+y^2=2\Leftrightarrow\left(X+y\right)^2=2+3xy\ge0\Leftrightarrow xy\ge-\dfrac{2}{3}\Rightarrow P\ge x^2+y^2-\dfrac{2}{3}=2+xy-\dfrac{2}{3}\ge2-\dfrac{2}{3}-\dfrac{2}{3}=\dfrac{2}{3}\Rightarrow min=\dfrac{2}{3}\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x^2-xy+y^2=2\end{matrix}\right.\)

 

 


Các câu hỏi tương tự
nảo
Xem chi tiết
Soda Sữa
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Thanh Trúc
Xem chi tiết
Đỗ Quyên
Xem chi tiết
Xuan Xuannajimex
Xem chi tiết
SAKU RAMA
Xem chi tiết
vi lê
Xem chi tiết
Dii's Thiên
Xem chi tiết