a) \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\left(x\ge0\right)\)
\(\Rightarrow2\sqrt{x}+\dfrac{1}{2}\sqrt{x}+\dfrac{7}{2}\sqrt{x}=6\Rightarrow6\sqrt{x}=6\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
b) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
\(\Rightarrow\sqrt{9\left(2x-1\right)}-0,5\sqrt{2x-1}+\dfrac{5}{2}\sqrt{2x-1}+7\sqrt{2x-1}=24\)
\(\Rightarrow3\sqrt{2x-1}-0,5\sqrt{2x-1}+\dfrac{5}{2}\sqrt{2x-1}+7\sqrt{2x-1}=24\)
\(\Rightarrow12\sqrt{2x-1}=24\Rightarrow\sqrt{2x-1}=2\Rightarrow2x-1=4\Rightarrow x=\dfrac{5}{2}\)
c) \(\sqrt{x^2-2x+1}-7=0\Rightarrow\sqrt{\left(x-1\right)^2}=7\Rightarrow\left|x-1\right|=7\)
\(\Rightarrow\left[{}\begin{matrix}x-1=7\\x-1=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-6\end{matrix}\right.\)
d) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-2\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\left(\dfrac{x}{x+2}\ge0,x\ne-2\right)\)
\(\Rightarrow\dfrac{7}{2}\sqrt{\dfrac{x}{x+2}}-3\sqrt{\dfrac{x}{4\left(x+2\right)}}-2\sqrt{\dfrac{x}{x+2}}=\sqrt{5}\)
\(\Rightarrow\dfrac{7}{2}\sqrt{\dfrac{x}{x+2}}-\dfrac{3}{2}\sqrt{\dfrac{x}{x+2}}-2\sqrt{\dfrac{x}{x+2}}=\sqrt{5}\)
\(\Rightarrow0=\sqrt{5}\) (vô lý) \(\Rightarrow\) pt vô nghiệm