HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Chứng minh rằng với a, b, c, d ta đều có: \(\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ac}{a+2b+c}\le\dfrac{a+b+c}{4}\)
Chứng minh rằng với a, b, c, d ta đều có:\(a^2+b^2+c^2+d^2+1\ge a+b+c+d\)
Tìm nghiệm nguyên dương của phương trình sau \(4x^2-4xy+4y^2=16\)
Giải phương trình:\(3x^4-2x^3-52x^2-4x+12=0\)
Cho biểu thức M= \(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)nhau.với hai số a, b dương khác
a/ Rút gọn M
b/Tính giá trị của M khi a=\(\sqrt{6+2\sqrt{5}}\),b=\(\sqrt{6-2\sqrt{5}}\)
Cho x=\(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\),y=\(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
Tính P=\(x^3+y^3-3\left(x+y\right)+1979\)
mong mọi người giúp thanks you
cho biểu thức P=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{ }x}\)
a/ Rút gọn P
b/Tính P với x = 14 -\(6\sqrt{5}\)
mong mọi người giúp thank you
chứng minh rằng \(n^4-1\) chia hết cho 8 với mọi n lẻ.