Tọa độ hóa \(A\left(0,0,0\right),B\left(1,0,0\right),D\left(0,1,0\right),A'\left(0,0,1\right),B'\left(1,0,1\right),D'\left(0,1,1\right)\)
\(\Rightarrow\overrightarrow{A'B}=\left(1,0,-1\right)\) ; \(\overrightarrow{A'C'}=\left(1,1,0\right)\)
\(\Rightarrow\overrightarrow{n}=\left[\overrightarrow{A'B},\overrightarrow{A'C'}\right]=\left(1,-1,1\right)\)
Đường thẳng AA' trùng với trục Oz nên có pt: \(\left\{{}\begin{matrix}x=0\\y=0\\z=t\end{matrix}\right.\)
\(\Rightarrow E\left(0,0,a\right)\)
\(\overrightarrow{CD'}=\left(-1,0,1\right)\) nên pt tham số CD': \(\left\{{}\begin{matrix}x=-t\\y=1\\z=1+t\end{matrix}\right.\)
\(\Rightarrow F\left(-b,1,1+b\right)\)
\(\Rightarrow\overrightarrow{EF}=\left(-b,1,b-a+1\right)\)
EF vuông góc (A'BC') nên cùng phương \(\overrightarrow{n}\)
\(\Rightarrow\dfrac{-b}{1}=\dfrac{1}{-1}=\dfrac{b-a+1}{1}\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{EF}=\left(-1,1,-1\right)\Rightarrow EF=\sqrt{3}\)