Cho hình vuông ABCD, trên tia đối của tia CD lấy điểm M bất kì (CM<CD), vẽ hình vuông CMNP (P nằm giữa B và C), DP cắt BM tại H, MP cắt BD tại K.
a) Chứng minh DH vuông góc BM
b) Tính Q=\(\frac{PC}{BC}+\frac{PH}{DH}+\frac{KP}{MK}\)
C) Chứng minh: MP.MK+DK.BD=DM^2
a) Cho a+b+c=0 và abc khác 0, Tính
P=\(\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+b^2-c^2}\)
b) Cho 2 số a và b thỏa mãn \(a\ge1;b\ge1\). Chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Cứu vs !!
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kì thuộc cạnh BC (M khác B,C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE=CM.
a) Chứng minh: Tam giác OEM vuông cân
b) Chứng minh : ME song song BN
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng
Cứu !!