Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Min

a) Cho a+b+c=0 và abc khác 0, Tính

P=\(\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+b^2-c^2}\)

b) Cho 2 số a và b thỏa mãn \(a\ge1;b\ge1\). Chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Cứu vs !!

svtkvtm
11 tháng 7 2019 lúc 21:27

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)

Vi Huyên
11 tháng 7 2019 lúc 21:30

a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )

\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)

Vì a + b + c = 0

Nên a + b = -c

=> ( a + b )2 = (-c)2 = c2

Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2

\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)

\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)

\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)

svtkvtm
11 tháng 7 2019 lúc 21:42

\(xét:\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{1+ab}=\left(\frac{1}{a^2+1}-\frac{1}{1+ab}\right)+\left(\frac{1}{b^2+1}-\frac{1}{1+ab}\right)=\frac{1+ab-a^2-1}{\left(a^2+1\right)\left(1+ab\right)}+\frac{1+ab-1-b^2}{\left(b^2+1\right)\left(1+ab\right)}=\frac{a\left(b-a\right)}{\left(a^2+1\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(b^2+1\right)\left(1+ab\right)}=\left(a-b\right)\left(\frac{b}{\left(b^2+1\right)\left(1+ab\right)}-\frac{a}{\left(a^2+1\right)\left(1+ab\right)}\right)=\left(a-b\right)\left(\frac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(ab+1\right)\left(b^2+1\right)}\right)=\left(a-b\right)\left(\frac{\left(ab-1\right)\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\) \(\left(a-b\right)^2\frac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\left(do:a\ge1;b\ge1\right)\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(a\ge1;b\ge1\right)\)


Các câu hỏi tương tự
Nguyễn Thảo Linh
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Khả Hân
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Huyền Anh Lê
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết