a) tại x=-2 thì \(B= \dfrac{2.(-2)+1}{(-2)^{2}-1}=-1\)
b) \(A= \dfrac{3x+1}{x^{2}-1}-\dfrac{x}{x-1}+\dfrac{x-1}{x+1}\)
\(A= \dfrac{3x+1}{(x-1)(x+1)}-\dfrac{x^{2}+x}{(x-1)(x+1)}+\dfrac{x^{2}-2x+1}{(x-1)(x+1)}\)\(A=\dfrac{3x+1-x^{2}-x+x^{2}-2x+1}{(x-1)(x+1)}\)
\(A=\dfrac{2}{(x-1)(x+1)}\)
c)+) \(P=A:B=\dfrac{2}{(x-1)(x+1)}:\dfrac{2x+1}{x^{2}-1}\)
\(P=\dfrac{2}{(x-1)(x+1)}.\dfrac{x^{2}-1}{2x+1}\)
\(P= \dfrac{2}{2x+1}\)
+) \(P=3 \) ⇔ \(\dfrac{2}{2x+1}=3\)
⇔ \(3(2x+1)=2\)
⇔ \(6x+3=2\)
⇔ \(6x=-1\)
⇔ \(x=-\dfrac{1}{6}\)
Vậy x=\(-\dfrac{1}{6}\)