HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
giả sử a à nghiệm phương trình x2+x-1=0. Tính
A=\(\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
giải hpt:
\(\left\{{}\begin{matrix}x+y+z=3\\xy+yz+xz=-1\\x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+2y=4\\2x+y+xy=4\end{matrix}\right.\)
Cho \(\left\{{}\begin{matrix}x,y>0\\\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\end{matrix}\right.\). Tìm Min P=\(\dfrac{x^2}{y}+\dfrac{y^2}{x}\).
Cho f(x) = (x4+\(\sqrt{2}\)x-7)2019 . Tính f(a) khi a=\(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\).
Cho \(\left\{{}\begin{matrix}a,b>0\\c\ne0\end{matrix}\right.\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\).
CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\).
Cho x,y \(\in\)N* và \(\left\{{}\begin{matrix}xy+x+7=71\\x^2y+xy^2=880\end{matrix}\right.\).
Tính A=x2+y2
Cho x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính A=(4x5+4x4-x3+1)19+\(\sqrt{4x^5+4x^4-5x^3+5x}\)+\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2019}\)
\(\left\{{}\begin{matrix}x^3+3y^2-6y+4=0\\x^2+x^2y^2-2y=0\end{matrix}\right.\)
Use the correct tense or form of the verbs in parentheses. 13 I suggest/_______ elderly people. ( help)
14/ Remember ____________ off the lights before going out. (turn) 15/ Get him __________ the washing machine. ( fix) 16/ What about ____ __________ by bike? ( travel)