Gọi a là nghiệm dương của phương trình. Không giải phương trình hãy tính giá trị của biểu thức : \(C=\dfrac{2x-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
rút gọn biểu thức
\(\left(\sqrt{a+1}-\dfrac{1}{\sqrt{a+1}}\right)\left(\dfrac{a^2+3\sqrt{a+1}-2a}{a}+2-a\right)\) với a>-1;a khác 0
Cho
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\)
\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
Hãy tính \(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
Rút gọn :
B=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1
Rút gọn biểu thức:
a)\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
b)\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d)\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cotan^2a\right)\left(1-cos^2a\right)\)
Giả sử phương trình Ax2+Bx+C=0 có 2 nghiệm x1 , x2 thì x1 + x2= \(-\dfrac{B}{A},x_1.x_2=-\dfrac{C}{A}\). Cho a khác 0 và giả sử phương trình x2 - ax - \(\dfrac{1}{2a^2}\)=0 có hai nghiệm x1,x2 . Chứng minh x14+x24 \(\ge2+\sqrt{2}\).
B1: giai pt: a, \(\dfrac{\left(x+1\right)^4}{\left(x^2+1\right)^2}+\dfrac{4x}{x^2+1}=6\)
B2: Tính giá trị của A= \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
B3: CMR voi 3 số thực a,b,c tùy ý thì ít nhất 1 trong 3 pt sau phải có nghiệm:
\(x^2-2ax+2b-1=0\left(1\right);x^2-2bx+2c-1=0\left(2\right);x^2-2cx+2a-1=0\left(3\right)\)