33.
\(x^{10}+x^5+1\\
=x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\\
=x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\
\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
34.
đặt: \(t=x^2+x+1,5\)
khi đó:
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\\
=\left(t-0,5\right)\left(t+0,5\right)-12\\
=t^2-0,25-12\\
=t^2-12,25\\
=\left(t-3,5\right)\left(t+3,5\right)\\
=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
35.
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\\
=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\\
=\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)+1\\
=\left(x^2-5x+5\right)^2-1+1\\
=\left(x^2-5x+5\right)^2\)
36.
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+15\\
=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+15\\
=\left(x^2-10x+20-4\right)\left(x^2-10x+20+4\right)+15\\
=\left(x^2-10x+20\right)^2-4^2+15\\
=\left(x^2-10x+20\right)^2-1\\
=\left(x^2-10x+19\right)\left(x^2-10x+21\right)\)
37.
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\\ =\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\\ =\left(x^2-10x+20-4\right)\left(x^2-10x+20+4\right)+16\\ =\left(x^2-10x+20\right)^2-4^2+16\\ =\left(x^2-10x+20\right)^2\)
38.
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)-24\\
=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\\
=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\
=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\\
=\left(x^2+5x+5\right)^2-1-24\\
=\left(x^2+5x+5\right)^2-5^2\\
=\left(x^2+5x+10\right)\left(x^2+5x\right)\\
=x\left(x+5\right)\left(x^2+5x+10\right)\)
39.
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\\ =\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\\ =\left(x^2+5x+5\right)^2-1+1\\ =\left(x^2+5x+5\right)^2\)
40.
\(a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\\
=a^3b^2-a^2b^3-c^3b^2+c^2b^3+a^2c^2\left(c-a\right)\\
=b^2\left(a^3-c^3\right)+b^3\left(c^2-a^2\right)+a^2c^2\left(c-a\right)\\
=b^2\left(a-c\right)\left(a^2+ac+c^2\right)+b^3\left(c-a\right)\left(c+a\right)+a^2c^2\left(c-a\right)\\
=-b^2\left(c-a\right)\left(a^2+ac+c^2\right)+\left(c-a\right)\left(cb^3+ab^3+a^2c^2\right)\\
=\left(c-a\right)\left(cb^3+ab^3+a^2c^2-a^2b^2-acb^2-b^2c^2\right)\)