Học tại trường Chưa có thông tin
Đến từ Đắc Nông , Chưa có thông tin
Số lượng câu hỏi 1
Số lượng câu trả lời 393
Điểm GP 121
Điểm SP 551

Người theo dõi (146)

Trịnh Lan Anh
cuccutbicyew
Huy Jenify
Edana_chan
Thư Phan

Đang theo dõi (7)

_silverlining
Linh Diệu
Linh Nguyễn

Câu trả lời:

a) \(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)

= \(\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^3\left(x-1\right)-\left(x-1\right)+2x^2}\)

= \(\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x-1\right)\left(x^3-1\right)+2x^2}\)

= \(\dfrac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)+2x^2}\)

= \(\dfrac{\left(x+1\right)^2.\left(x^2-x+1\right)}{\left(x-1\right)^2\left(x^2+x+1\right)+2x^2}\)

Ta thấy mẫu thức của phân thức vốn đã lớn hơn 0 với mọi x, vậy để p/t trên có giá trị bằng 0 thì tử thức phải bằng 0

\(\Rightarrow\left(x+1\right)^2\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Vậy x = -1

b) \(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)

= \(\dfrac{x^4-x^3+x^3-x^2-4x^2+4}{x^4-x^3+x^3-x^2-9x^2+9}\)

= \(\dfrac{x^3\left(x-1\right)+x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)}{x^3\left(x-1\right)+x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)}\)

= \(\dfrac{\left(x-1\right)\left(x^3+x^2-4x-4\right)}{\left(x-1\right)\left(x^3+x^2-9x-9\right)}\)

= \(\dfrac{x^3+x^2-4x-4}{x^3+x^2-9x-9}\)

= \(\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)-9\left(x+1\right)}\)

= \(\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\) ( ĐKXĐ : \(x\ne\pm3\) )

Để phân thức trên có giá trị bằng 0 thì tử thức phải bằng 0

\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) ( thoả mãn điều kiện xác định )

Vậy x = 2 hoặc x = -2

Câu trả lời:

B1:

a) \(x^3-2x^2+x-2\)

= \(x^2\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+1\right)\)

b) \(2x^3+3x^2-3x-2\)

= \(2x^3-2x^2+5x^2-5x+2x-2\)

= \(2x^2\left(x-1\right)+5x\left(x-1\right)+2\left(x-1\right)\)

= \(\left(x-1\right)\left(2x^2+5x+2\right)\)

= \(\left(x-1\right)\left(2x^2+4x+x+2\right)\)

= \(\left(x-1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]\)

= \(\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

c) \(5x^2+5y^2-x^2z+2xyz-y^2z-10xy\)

= \(5\left(x^2+2xy+y^2\right)+z\left(x^2+2xy+y^2\right)\)

= \(5\left(x+y\right)^2+z\left(x+y\right)^2\)

= \(\left(x+y\right)^2\left(5+z\right)\)

d) \(x^3-3x^2y+3xy^2-x+y-y^3\)

= \(\left(x-y\right)^3-\left(x-y\right)\)

= \(\left(x-y\right)\left[\left(x-y\right)^2-1\right]\)

= \(\left(x-y\right)\left(x-y-1\right)\left(x-y+1\right)\)

B2:

a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

\(\left(2x-5\right).\left(-2\right)=0\)

\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)

b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\left(x+3\right)\left(x^2-2x\right)=0\)

\(\left(x+3\right).x.\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)

c) \(2x^3+3x^2+2x+3=0\)

\(x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\left(2x+3\right)\left(x^2+1\right)=0\)

Ta thấy \(x^2+1>0\) với mọi x

\(\Rightarrow2x+3=0\Rightarrow x=\dfrac{-3}{2}\)