\(\dfrac{x+1}{1}+\dfrac{2x+3}{3}+\dfrac{3x+5}{5}+...+\dfrac{10x+19}{19}=12+\dfrac{4}{3}+\dfrac{6}{5}+...+\dfrac{20}{19}\)
\(x+1+\dfrac{2x}{3}+1+\dfrac{3x}{5}+1+...+\dfrac{10x}{19}+1-12-\dfrac{4}{3}-\dfrac{6}{5}-...-\dfrac{20}{19}=0\)
\(x+\dfrac{2x}{3}-\dfrac{4}{3}+\dfrac{3x}{5}-\dfrac{6}{5}+...+\dfrac{10x}{19}-\dfrac{20}{19}+10-12=0\)
\(x-2+\dfrac{2x-4}{3}+\dfrac{3x-6}{5}+...+\dfrac{10x-20}{19}=0\)
\(x-2+\dfrac{2\left(x-2\right)}{3}+\dfrac{3\left(x-2\right)}{5}+...+\dfrac{10\left(x-2\right)}{19}=0\)
\(\left(x-2\right)\left(\dfrac{2}{3}+\dfrac{3}{5}+...+\dfrac{10}{19}\right)=0\)
Ta thấy \(\left(\dfrac{2}{3}+\dfrac{3}{5}+...+\dfrac{10}{19}\right)>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)