HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a)A=\(1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)
Vậy A < B
b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)
Vậy B < A
\(x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2+4x-6x-24=0\)
\(x\left(x+4\right)-6\left(x+4\right)=0\)
\(\left(x+4\right)\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)
A = \(\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)\)
A = \(x^2-6x+9-4x^2+1=-3x^2-6x+10\)
B = \(\left(2x-3\right)^2-\left(x-1\right)\left(2x+1\right)\)
B = \(4x^2-12x+9-2x^2-x+2x+1\)
B = \(2x^2-11x+10\)
C = \(4x\left(x-3\right)^2-\left(4-2x\right)^2\)
C = \(4x\left(x^2-6x+9\right)-16+16x-4x^2\)
C = \(4x^3-24x^2+36x-16+16x-4x^2\)
C = \(4x^3-28x^2+52x-16\)
D = \(3x\left(x-1\right)\left(x-2\right)-x\left(2x-1\right)^2\)
D = \(\left(3x^2-3x\right)\left(x-2\right)-x\left(2x-1\right)^2\)
D = \(3x^3-6x^2-3x^2+6x-x\left(4x^2-4x+1\right)\)
D = \(3x^3-9x^2+6x-4x^3+4x^2-x\)
D = \(-x^3-5x^2+5x\)
\(\left(2x+1\right)^2-\left(1-2x\right)^2=16\)
\(\left(2x+1-1+2x\right)\left(2x+1+1-2x\right)=16\)
\(4x.2=16\)
\(8x=16\Rightarrow x=2\)
M = \(\left(x-1\right)^3-x\left(x+2\right)^2+7x\left(x+\dfrac{1}{7}\right)\)
M=\(x^3-3x^2+3x-1-x.\left(x^2+4x+4\right)+7x^2+x\)
M = \(x^3-3x^2+3x-1-x^3-4x^2-4x+7x^2+x\)
M = \(-1\)
Vậy...
1) Ta có:
\(2x-x^2-3=-\left(x^2-2x+3\right)\)
= \(-\left(x^2-2x+1+2\right)\)
= \(-\left[\left(x+1\right)^2+2\right]\)
= \(-\left(x+1\right)^2-2< 0\) với mọi x ( đpcm )
Ta có : \(n^4-4n^3-4n^2+16n\)
= \(n^3\left(n-4\right)-4n\left(n-4\right)\)
= \(\left(n-4\right)\left(n^3-4n\right)=\left(n-4\right)n\left(n^2-4\right)\)
= \(\left(n-4\right).n.\left(n-2\right)\left(n+2\right)\)
= \(\left(n-4\right).\left(n-2\right).n.\left(n+2\right)\)
Dấu hiệu chia hết cho 384: Tích của 4 số chẵn liên tiếp thì chia hết cho 384.
Ta thấy kết quả \(\left(n-4\right).\left(n-2\right).n.\left(n+2\right)\) vốn đã là tích của 4 số chẵn liên tiếp, do đó tích trên chia hết cho 384 với mọi n chẵn và n > 4
B1:
a) \(x^2\left(x+2\right)-3x\left(x^2-1\right)\)
= \(x^3+2x^2-3x^3+3x=-2x^3+2x^2+3x\)
b) \(x^3\left(x-4\right)+\left(x^2+3\right)\left(-x\right)-x^4\)
= \(x^4-4x^3-x^3-3x-x^4=-5x^3-3x\)
B2:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\)
\(-13\left(x+2\right)=0\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
b) \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5=4\)
\(x^3+x^2+x-x^2-x^3-x^2-x+5-4=0\)
\(-x^2+1=0\Rightarrow-x^2=-1\Rightarrow x=\pm1\)
-Dùng từ gợi ý viết thành câu hoàn chỉnh:
1/Mrs.Xuan/say/she/be/happy/tosee you.
=> Mr.s Xuan said she was happy to see you.
2/Christopher Columbus/be/the fist explorer/who/discover/America.
=> Christopher Columbus is the first explorer who discovered America
-Supply the corret form or tense of the verb:
1/...Is......Nam(go)....going....to West Lake Park on this birthday?
2/Mai still in her room. She (iron)..is ironing......her clothes for next week.