phân tích các đa thức sau thành nhân tử:
a) \(\left(ab-1\right)^2+\left(a+b\right)^2\)
Ta thấy \(\left\{{}\begin{matrix}\left(ab-1\right)^2\ge0\\\left(a+b\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(ab-1\right)^2+\left(a+b\right)^2>0\) nên k phân tích thành nhân tử đc.
b) \(x^3+2x^2+2x+1\)
= \(x^3+x^2+x^2+x+x+1\)
= \(x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+x+1\right)\)
c) \(x^3-4x^2+12x-27\)
= \(x^3-3x^2-x^2+3x+9x-27\)
= \(x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
= \(\left(x-3\right)\left(x^2-x+9\right)\)
d) \(x^4+2x^3+2x^2+2x+1\)
= \(x^4+x^3+x^3+x^2+x^2+x+x+1\)
= \(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
= \(\left(x+1\right)\left(x^3+x^2+x+1\right)\)
= \(\left(x+1\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]\)
= \(\left(x+1\right).\left(x+1\right)\left(x^2+1\right)\)
= \(\left(x+1\right)^2\left(x^2+1\right)\)