Học tại trường Chưa có thông tin
Đến từ Thừa Thiên Huế , Chưa có thông tin
Số lượng câu hỏi 7
Số lượng câu trả lời 1387
Điểm GP 208
Điểm SP 1632

Người theo dõi (176)

ngọc hân
Hà Hoa
Lê Cẩm Tú
Hùng Nguyễn

Đang theo dõi (0)


Câu trả lời:

Đề khá hay đấy! Nhưng lần sau đừng viết sai đề nx!

a) ĐK: \(x>4\)

b) \(P=\dfrac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\dfrac{8}{x}+\dfrac{16}{x^2}}}\)

= \(\dfrac{\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}}{\sqrt{1-2.\dfrac{4}{x}+\left(\dfrac{4}{x}\right)^2}}\)

= \(\dfrac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(1-\dfrac{4}{x}\right)^2}}\)

= \(\dfrac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|1-\dfrac{4}{x}\right|}\)

= \(\dfrac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\dfrac{4}{x}}\) = \(\left[{}\begin{matrix}\dfrac{2x\sqrt{x-4}}{x-4}khix\ge8\\\dfrac{4x}{x-4}khi4< x< 8\end{matrix}\right.\)

Xét \(P=\dfrac{2x}{\sqrt{x-4}}\left(x\ge8\right)\) thì:

Để \(P\in Z\) khi \(\dfrac{2x-8+8}{\sqrt{x-4}}\in Z\)

<=> \(2.\left(\sqrt{x-4}\right)+\dfrac{8}{\sqrt{x-4}}\in Z\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-4}\in Z^+\\\sqrt{x-4}\inƯ\left(8\right)\end{matrix}\right.\)

\(x\ge8\) => \(\left[{}\begin{matrix}\sqrt{x-4}=2\\\sqrt{x-4}=4\\\sqrt{x-4}=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=8\\x=20\\x=68\end{matrix}\right.\)

Xét \(P=\dfrac{4x}{x-4}\left(4< x< 8\right)\) thì:

Để \(P\in Z\) khi \(\dfrac{4x-16+16}{x-4}\in Z\) <=> \(4+\dfrac{16}{x-4}\in Z\)

=> \(x-4\inƯ\left(16\right)\) \(0< x-4< 4\)

=> \(x-4=2\) => \(x=6\)

Vậy \(x\in\left\{6;8;20;68\right\}\) thì \(P\in Z\)

P/s: Vì bài này dài nên mk lm khá tắt, ko hiểu cứ hỏi!