HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+......+\dfrac{1}{59.60}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{59}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)
- \(2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{60}\right)\) - \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)+ \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)
- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)
= \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)
Vậy\(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+....+\dfrac{1}{59.60}\)
https://hoc24.vn/hoi-dap/question/214681.html
nhầm 5 lần
đs: 5 lần
\(A=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)......\left(1-\dfrac{1}{780}\right)\)
= \(\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.......\dfrac{779}{780}\)
= \(\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}.....\dfrac{1558}{1560}\)
= \(\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}......\dfrac{38.41}{39.40}\)
= \(\dfrac{1.4.2.5.3.6.....38.41}{2.3.3.4.4.5...39.40}\)
= \(\dfrac{\left(1.2.3....38\right)\left(4.5.6....41\right)}{\left(2.3.4....39\right)\left(3.4.5...40\right)}\)
= \(\dfrac{1}{39}.\dfrac{41}{3}\) = \(\dfrac{41}{117}\)