HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
(hình trên nhé)
Trong Δvuông OAB có:AB2=OA2+OB2(pitago)→OB2=\(\left(2\sqrt{13}\right)^2-6^2=16\)→OB=4(đvđd)
vì ΔABD vuông ở A có đường cao AO ,nên:
OA2=OB.OD(hệ thức lượng về đường cao)→OD=\(\frac{OA^2}{OB}=\frac{6^2}{4}=9\)(đvđd)
trong Δ vuông AOD có:AD2=OA2+OD2(pitago)→AD=\(\sqrt{117}\)(đvđd)
mặt khác:AB//CD→\(\frac{OB}{OD}=\frac{AB}{CD}\)(hệ quả tales)→CD=\(\frac{9.2\sqrt{13}}{4}=\sqrt{263,25}\)(đvđd)
vậy SABCD=\(\frac{1}{2}\left(AB+CD\right).AD=\frac{1}{2}\left(2\sqrt{13}+\sqrt{263,25}\right).\sqrt{117}=126,75\)(đvdt)
(bn tự vẽ hình)Gọi AH giao EFtại M , AI giao EF tại N
a) xét tứ giác AEHF có: A=E=F=90o(góc)→AEHF là HCN→AM=EM=MH=MF
Ta có: ΔAHF~ΔACH(g.g)→AHF=ACH(góc) mà AHF =HAE (góc)(vì SLT do AE//HF)→ACH=HAE(góc)
Mà MA=ME(cmt)→ΔAME cân ở M→HAE=FEA(góc) do đó ACH=FEA(góc)
lại có BHE=ACH(góc)(đồng vị )→BHE=FEA(góc)
mặt khác:NAE=90o-FEA(ΔAEN vuông ở N) , B = 90o-BHE(ΔBHE vuông ở E )
→NAE=B(góc)→ΔAIB cân ở I → IB=IA
tương tự ta có :IA=IC
vậy IB=IC→I là trung điểm của BC
b) ta có : sABC=2sAEHF→SABC=4SAEF→\(\frac{SAEF}{SABC}=\frac{1}{4}\)mà ΔAEF~ΔACB(cmt)→\(\left(\frac{AF}{AB}\right)^2=\frac{1}{4}\)→\(\frac{AF}{AB}=\frac{1}{2}\)
→\(\frac{HE}{AB}=\frac{1}{2}\)(AF=HE)
→ΔAHB vuông ở H có đương cao HE=1/2 cạnh huyền→HE là đường trung tuyến của AB →ΔAHB vuông cân ở H→B=45o(góc)
→C=45o(góc)
vậy ΔABC vuông cân ở A
(câu b lm bừa nhé)
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
↔\(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
↔\(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
↔\(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\)→\(\left[\begin{array}{nghiempt}x+y+xy=-6\\x+y+xy=4\end{array}\right.\)
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ\(\left\{\left(0;-6\right),\left(4;-2\right)...\right\}\)
Th còn lại giải tương tự
hình như sai đề r bạn ơi
1) \(15-\sqrt{216}=15-\sqrt{4}.\sqrt{54}\)=\(9-2.\sqrt{9}.\sqrt{6}+6\)=\(\left(\sqrt{9}-\sqrt{6}\right)^2=\left(3-\sqrt{6}\right)^2\)
2)\(20-\sqrt{76}=20-\sqrt{4}.\sqrt{19}=19-2\sqrt{19}.1+1=\left(\sqrt{19}-1\right)^2\)
3)\(24-12\sqrt{3}=6\left(4-2\sqrt{3}\right)=6\left(3-2.\sqrt{3}.1+1\right)=6\left(\sqrt{3}-1\right)^2\)
4)\(7-\sqrt{13}=\frac{14-2\sqrt{13}}{2}=\frac{13-2\sqrt{13}.1+1}{2}=\frac{\left(\sqrt{13}-1\right)^2}{2}\)
5)\(16-\sqrt{31}=\frac{32-2\sqrt{31}}{2}=\frac{31-2\sqrt{31}.1+1}{2}=\frac{\left(\sqrt{31}-1\right)^2}{2}\)
ta có:\(\sqrt{5}< \sqrt{6,25}=2,5\)
\(\sqrt{3}+1>\sqrt{2,25}+1=2,5\)
→\(\sqrt{5}< \sqrt{3}+1\)
ta có:BD2+CE2+AF2=MB2-MD2+MC2-ME2+MA2-MF2=MA2+MB2+MC2-(MD2+ME2+MF2)
DC2+EA2+FB2=MC2-MD2+MA2-ME2+MB2-MF2=MA2+MB2+MC2-(MD2+ME2+MF2)
→BD2+CE2+AF2=DC2+EA2+FB2
A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)
A=\(\left(x^2+y^2+z^2+1-2xy+2xz-2x+2y-2z\right)+\left(y^2-4y+4\right)+2\left(z^2-2.\frac{3}{2}z+\frac{9}{4}\right)+1998,5\)A=\(\left(x-y+z-1\right)^2+\left(y-2\right)^2+2\left(z-\frac{3}{2}\right)^2+1998,5\)
vậy A min = 1998,5↔\(\begin{cases}x-y+z-1=0\\y-2=0\\z-\frac{3}{2}=0\end{cases}\)↔\(\begin{cases}x=z=1,5\\y=2\end{cases}\)
(thế wai nào thử lại vẫn sai z,thánh nào cao tay jup vs)
ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)(dấu = xảy ra khi \(\left(y+z\right)^2=4x^2\)↔y+z=2x)
tương tự ta có:\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)(dấu = cũng xảy ra khi x+z=2y;x+y=2z)
cộng từng vế ta có:P+\(\frac{x+y+z}{2}\ge x+y+z\)
→P\(\ge\frac{x+y+z}{2}\)mà x+y+x=1
\(P\ge\frac{1}{2}\)↔\(\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}\)→x=y=z=1/3
gọi 2 cạnh góc vuông lần lượt là a và b(a,b có vai trò như nhau;a,bϵ N)
thì độ dài cạnh huyền là\(\sqrt{a^2+b^2}\)
theo đề bài ta có: \(2.\frac{1}{2}a.b=3\left(a+b+\sqrt{a^2+b^2}\right)\)
→ab-3a-3b=3\(\sqrt{a^2+b^2}\)
→\(a^2b^2+9a^2+9b^2-6a^2b-6ab^2+18ab=9a^2+9b^2\)
→\(a^2b^2-6a^2b-6ab^2+18ab=0\)
→ab-6a-6b+18=0→(a-6)(b-6)=18=1.18=2.9=3.6(vì a,b>0→a-6;b-6>-6 nên ta loại các giá trị âm)
a-6 1 2 3
b-6 18 9 6
a 7 8 9
b 24 15 12
thử lại ta có tất cả đều t/m
vậy (a,b)ϵ\(\left\{\left(7,24\right);\left(8,15\right);\left(9,12\right)\right\}\)