HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Nhìn qua thấy cách giải của mấy bạn cũng đúng rồi, mình xin bổ sung chút xíu :
Gọi ƯCLN(12a+1,30a+1) = d (\(d\ge1\))
\(\begin{cases}12a+1⋮d\\30a+2⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(12a+1\right)⋮d\\2\left(30a+2\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}60a+5⋮d\\60a+4⋮d\end{cases}\) \(\Rightarrow\left(60a+5\right)-\left(60a+4\right)⋮d\)\(\Leftrightarrow1⋮d\)
\(\Rightarrow d\le1\) mà điều kiện \(d\ge1\)
=> d = 1. Vậy phân số trên tối giản.
Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{abc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}=\frac{b+bc+1}{b+bc+1}=1\)
Vậy ta có điều phải chứng minh.
Lưu ý : abc = 1
\(x^4-14x^2-7x+30=\left(x^4+x^3-3x^2\right)+\left(-x^3-x^2+3x\right)+\left(-10x^2-10x+30\right)\)
\(=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-10\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x^2-x-10\right)\)
Cho m gam glucozơ lên men thành ancol etylic. Hấp thụ hết lượng khí sinh ra vào dung dịch Ca(OH)2 , thu được 150 g kết tủa. hiệu suất của quá trình lên men đạt 60%. Giá trị của m là
A. 112,5
B. 180,0
C. 225,0
D. 120,0
Ta sẽ chứng minh \(a^3+b^3+c^3-3abc=0\Leftrightarrow a+b+c=0\)
Phân tích thành nhân tử : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Vì a + b + c = 0 nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) hay \(a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)
Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
TO CUNG CO DE BAI NHU VAY
Ta có : \(x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x = 1
Vậy giá trị nhỏ nhất của biểu thức là 4 khi x = 1
1 giờ = 60 phút
Vậy trong 5 phút báo gấm chạy được:
120 x ( 5 / 60 ) = ???
Bạn tự tính nhé!
Ta có : \(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=n^2\left(n+1\right)^2+2n\left(n+1\right)+1\)
\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.
Bạn thêm điều kiện n là số tự nhiên nhé ^^