HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1. x^3-19x-30 =x^3-25x+6x-30 =x(x^2-25)+6(x-5) =x(x+5)(x-5)+6(x-5) =(x-5)(x^2+5x+6) =(x-5)(x^2+2x+3x+6) =(x-5)[x(x+2)+3(x+2)] =(x-5)(x+2)(x+3)
Ta có (x−y)(x+y)=\(\sqrt{y+1}\)>0(x−y)(x+y)=y+1>0.
Suy ra x>yx>y.
Suy ra x≥1x≥1 nên x+y≥y+1≥1x+y≥y+1≥1.
Mặt khác, x−y>0x−y>0 nên x−y≥1x−y≥1.
Do đó, (x−y)(x+y)≥y+1≥ \(\sqrt{y+1}\) (x−y)(x+y)≥y+1≥y+1.
Dấu "=" \(\Leftrightarrow\) y+1=1;x+y=y+1;x−y=1y+1=1;x+y=y+1;x−y=1.
Tức là x=1;y=0
xy(x+y)+yz(y+z)+xz(x+z)+2xyz = xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz = xy(x + y) + yz(y + z + x) + xz(x + z + y) = xy(x + y) + z(x + y + z)(y + x) = (x + y)(xy + zx + zy + z²) = (x + y)[x(y + z) + z(y + z)] = (x + y)(y + z)(z + x)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
bài 2
\(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+4}\)
\(\Rightarrow\) \(\left(3x+1\right)\left(5x+4\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Rightarrow15x^2+12x+10x+8=15x^2+21x-5x-7\)
\(\Rightarrow22x+8=16x-7\)
\(\Rightarrow22x+16x=-7-8\)
\(\Rightarrow6x=-15\)
\(\Rightarrow x=-2,5\)
Vậy x=-2,5
Ta có :
A > a/a+b+c + b/a+b+c + c/ a+b+c = 1
=> A>1 1/
B = b/a+b + c/b+c + a/c+a < b/a+b+c + c/a+b+c + a/a+b+c=1
=>B>1
Mà A+B = 3 và B>1 nên :
=> A < 2 2/
Từ 1/ và 2/ ,
=> 1<A<2 (đpcm)