
a,
Theo bài ra ta có:
+)FE//BC
+)EC//BA hay ED//BA
+)AC//FB hay AC//FD
Khi đó:
+)\(\widehat{FBA}=\widehat{BAC}\)
+)\(\widehat{B\text{AF}}=\widehat{ABC}\)
Vì BF//AC
Xét \(\Delta FBA\) và \(\Delta CAB\) có:
\(\left\{{}\begin{matrix}\widehat{B\text{AF}}=\widehat{ABC}\\BAchung\\\widehat{FBA}=\widehat{BAC}\end{matrix}\right.\) (cmt)
=> \(\Delta FBA\) = \(\Delta CAB\) (g.c.g)
=> FB=AC ( hai cạnh tương ứng )
Ta lại có:
+) \(\widehat{FAB}=\widehat{CEA}\)
+) \(\widehat{BFA}=\widehat{CAE}\)
( vì BF//CA và BA//CE )
=> \(\widehat{FBA}=\widehat{ACE}\)
Xét \(\Delta FBA\) và \(\Delta ACE\) có:
\(\left\{{}\begin{matrix}\widehat{BFA}=\widehat{CAE}\\FB=AC\\\widehat{FBA}=\widehat{ACE}\end{matrix}\right.\) (cmt)
=> \(\Delta FBA=\Delta ACE\left(g.c.g\right)\)
=> FA=EA ( hai cạnh tương ứng )
Mà F;A;E thẳng hàng
=> A là trung điểm của EF
(đ.p.c.m)
b,
Các đường cao của tam giác ABC là các đường trung trực của tam giác DFE