Bài 6: Tính chất ba đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác. Chứng minh rằng tam giác đó là tam giác cân ?

Đào Vũ Phong
17 tháng 5 2017 lúc 16:11

Khi một tam giác có đường trung tuyến đồng thời là đường phân giác thì đó là tam giác cân.

Ở đây tam giác ABC có AM là trung tuyến đồng thời là phân giác vậy

=> tam giác ABC là tam giác cân (tính chất tam giác cân)

Nguyễn Ngọc Sáng
25 tháng 5 2017 lúc 8:46

Ta có hình vẽ :

A B C M H

Trên tia đổi của tia MA lấy điểm H sao cho MA=MH

Xét \(\Delta MBH\)\(\Delta MCA\) có:

\(\left\{{}\begin{matrix}AM=HM\left(theocachve\right)\\\widehat{BMH}=\widehat{CMA\left(\text{đ}^2\right)}\\BM=CM\left(AMlatrungtuyen\right)\end{matrix}\right.\)

=> \(\Delta MBH\) = \(\Delta MCA\) (c.g.c)

=> +) BH=CA ( hai cạnh tương ứng) (1)

+) \(\widehat{BHM}=\widehat{CAM}\) ( hai góc tương ứng ) (2)

Ta lại có:

AM là phân giác => \(\widehat{BAM}=\widehat{MAC}\) (3)

Từ (2) và (3) suy ra: \(\widehat{BAM}=\widehat{MHB}\)

=> \(\Delta HBA\) là tam giác cân ( vì có hai góc ở đáy bằng nhau )

=> AB=HB ( hai cạnh bên của tam giác cân ) (4)

Từ (1) và (4) suy ra :

AB=AC

=> \(\Delta ABC\) là tam giác cân ( vì có hai cạnh trong tam giác bằng nhau )

( đ.p.c.m )

いがつ
26 tháng 3 2018 lúc 11:55

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)

Xét hai tam giác MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 900

MH = MK (chứng minh trên)

MB = MC (gt)

Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.