HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tuấn Anh Phan Nguyễn và Huỳnh Châu Giang chép đâu mà dài vậy?
=> A= \(\frac{\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}\right).23.7.1009}{\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right).23.7.1009}\) + \(\frac{1}{30.1009-160}\)
=> A= \(\frac{7.1009+23.1009-23.7}{7.1009+23.1009-23.7+1}\) + \(\frac{1}{7.1009+23.1009-23.7+1}\) = \(\frac{7.1009+23.1009-23.7+1}{7.1009+23.1009-23.7+1}\) = 1.
Đặt A=\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\)
=> 2A= 1-\(\frac{1}{2}\) + \(\frac{1}{4}\) - \(\frac{1}{8}\) + \(\frac{1}{16}\) - \(\frac{1}{32}\)
=> 3A= 1 - \(\frac{1}{64}\) <1 => A<1:3 => A<\(\frac{1}{3}\) => đpcm.
Ta có: Vế phải bằng: \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{n}\) - \(\frac{1}{n+1}\) =>đpcm.
Mình biết làm rồi, đợi mình đi học đã 9h về mình giúp, Bye bye.
Y trong giải hen bạn!
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.