HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Gọi số đó là a
=> \(a-170⋮255\)
255=85\(\times\)3
\(\Rightarrow a-170⋮85\)
Vì \(170⋮85\)
\(\Rightarrow a⋮85\)
Ta có:
\(a-12⋮36\)
\(\Rightarrow\left\{{}\begin{matrix}a-12⋮4\\a-12⋮9\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}12⋮4\\12⋮̸9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮4\\a⋮̸9\end{matrix}\right.\)
\(A=2.4.6.8.10.12-2^3.5\)
\(2.4.6.8.10⋮6;8;20\)
\(40⋮8;20\)
\(\Rightarrow A⋮8;20\) và \(A⋮̸6\)
\(G=-x^2+4x-5\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
=> \(G\le-1\forall x\)
\(MaxG=-1\Leftrightarrow x=2\)
\(5n+14⋮n+2\)
\(5\left(n+2\right)+4⋮n+2\)
\(4⋮n+2\)
\(n+2\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n\in\left\{0;2\right\}\)
a) \(120+36=12\left(10+3\right)=12.13⋮12\)
b) \(120a+36b\)
\(=12.10a+12.3b\)
\(=12\left(10a+3b\right)⋮12\)
\(87-\left(73-x\right)=20\)
\(73-x=87-20\)
\(73-x=67\)
\(x=73-67\)
\(x=6\)
Sửa đề:
\(E=x^4-2x^3+3x^2-4x+2022\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+2020\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+2020\)
Vì \(\left(x^2-x\right)^2+2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow E\ge2020\)
\(MinE=2020\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow x=1\)
\(Đặt\) \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+....+n.2^{n+1}\)
\(2A-A=2.2^3+3.2^4+4.2^5+....+n.2^{n+1}-\left(2.2^2+3.2^3+4.2^4+...+n.2^n\right)\)
\(=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)
\(=-2^2-\left(2^2+2^3+...+2^n\right)+n.2^{n+1}\)
\(=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)
\(=\left(n-1\right).2^{n+1}\)
=> \(\left(n-1\right).2^{n+1}=2^{n+16}=2^{n+1}.2^{15}\)
\(\Leftrightarrow n-1=2^{15}\)
\(\Leftrightarrow n=2^{15}+1\)