HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(x^2-x=x\left(x-1\right)\)
Câu E bạn xem lại đề nha
F=\(-y^2+2y-6\)
\(=-\left(y^2-2y+6\right)\)
\(=-\left(y-1\right)^2-5\)
Vì \(-\left(y-1\right)^2\le0\forall y\)
\(\Rightarrow F\le-5\forall y\)
\(MaxF=-5\Leftrightarrow y=1\)
Ta có:
\(\widehat{AOC}+\widehat{BOD}=98^o+74^o\)
\(\widehat{AOD}+2\widehat{COD}+\widehat{BOC}=172^o\)
\(\widehat{COD}+\widehat{AOB}=172^o\)
\(\widehat{COD}=172^o-\widehat{AOB}=172^o-136^o=36^o\)
\(\dfrac{3}{17}A=\dfrac{6}{7.13}+\dfrac{9}{13.22}+\dfrac{15}{22.37}+\dfrac{12}{37.49}\)
\(\dfrac{3}{17}A=\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{37}+\dfrac{1}{37}-\dfrac{1}{49}\)
\(\dfrac{3}{17}A=\dfrac{1}{7}-\dfrac{1}{49}=\dfrac{6}{49}\)
\(A=\dfrac{6}{49}:\dfrac{3}{17}=\dfrac{6.17}{49.3}=\dfrac{34}{49}\)
\(313^5.299-313^6.36\)
\(=313^5.299-313^636\)
\(=313^5\left(299-313.36\right)\)
Ta có: \(299\equiv5\left(mod7\right)\)
\(313\equiv5\left(mod7\right)\)
\(36\equiv1\left(mod7\right)\)
=> \(299-313.36\equiv5-5.1=0\left(mod7\right)\)
=> \(299-313.36⋮7\)
=> \(313^5.299-313^6.36⋮7\)
\(3^{n+1}-2.3^n+2^{n+5}-7.2^n\)
\(=3^n\left(3-2\right)+2^n\left(2^5-7\right)\)
\(=3^n+2^n.25\)
Vì \(3^n⋮̸25\); \(25.2^n⋮25\)
=> \(3^n+2^n.25⋮̸25\)
=> \(3^{n+1}-2.3^n+2^{n+5}-7.2^n⋮̸25\)
\(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\)
\(=\dfrac{1}{3}\left(-1+\dfrac{1}{3}\right)+\dfrac{1}{3^3}\left(-1+\dfrac{1}{3}\right)+...+\dfrac{1}{3^{99}}\left(-1+\dfrac{1}{3}\right)\)
\(=\dfrac{-2}{3}\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(9B=3+\dfrac{1}{3}+...+\dfrac{1}{3^{97}}\)
\(9B-B=3-\dfrac{1}{3^{99}}\)
\(B=\dfrac{3-\dfrac{1}{3^{99}}}{8}\)
\(A=-\dfrac{2}{3}B=\dfrac{-2}{3}.\dfrac{3-\dfrac{1}{99}}{8}=\dfrac{\dfrac{1}{3^{100}}-1}{4}\)
\(x+y=1\Rightarrow3xy=3xy\left(x+y\right)\)
\(x^3+3xy+y^3\)
\(=x^3+3xy\left(x+y\right)+y^3\)
\(=\left(x+y\right)^3=1\)
a) \(2^{x+1}+2^x=3.32\)
\(2^x\left(2+1\right)=3.32\)
\(2^x=32=2^5\)
\(x=5\)
b) \(5^{2x+1}-5^{2x}=100\)
\(5^{2x}\left(5-1\right)=4.25\)
\(5^{2x}=25=5^2\)
x=1
c) \(7^{3x+1}+7^{3x}=343.14^3\)
\(7^{3x}\left(7+1\right)=343.14^3\)
\(7^{3x}=\dfrac{7^3.14^3}{2^3}=7^3.7^3=7^6\)
\(3x=6\)
\(x=2\)