HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho hình bình hành ABCD và ABMN không đồng phẳng . Tìm số giao điểm của mặt phẳng (ABCD) với đường thẳng MB
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)
1) tính \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{6n-8}{n-1}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{n^2+5n-3}{4n^3-2n+5}\)
1) tính \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{19683}\)
2) tính \(S=1+\dfrac{1}{5}+\dfrac{1}{25}+...+\dfrac{1}{78125}\)
1) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=-1\\u_2=3\end{matrix}\right.\) tính tổng của 10 số hạng đầu tiên của cấp số nhân
2) cho cấp số nhân \(\left(u_n\right)\) có \(\left\{{}\begin{matrix}u_1=6\\u_2=18\end{matrix}\right.\) tính tổng của 12 số hạng đầu tiên của cấp số nhân
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2048\) và \(q=\dfrac{5}{4}\) tính \(S_8=u_1+u_2+u_3...+u_8\)
2) cho cấp số nhân \(\left(u_n\right)\) có \(u_1=-3\) và \(q=\dfrac{1}{2}\) tính \(S_1=u_1+u_2+u_3...+u_9+u_{10}\)
1) tìm x để 3 số x + 2; x + 4; 4x + 8 lập thành 1 cấp số nhân
2) tìm x để 3 số 1; 5; 2x + 4 lập thành 1 cấp số nhân
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật tâm I. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SB, SD
a) chứng minh (MNP) // (ABCD)
b) chứng minh (SBC) // (MPI)
cho hình chóp S.ABCD, đáy ABCD là hình thoi tâm O. Gọi E, F, K lần lượt là trung điểm các cạnh SA, AB, AD
a) chứng minh (SBD) // (EFK)
b) chứng minh (EFO) // (SBC)