Câu 1
(b)
Có \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\dfrac{6^2-14}{2}=11\)
\(\Rightarrow a+11=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
Tương tự \(b+11=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
\(c+11=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Có: \(\dfrac{\sqrt{a}}{a+11}+\dfrac{\sqrt{b}}{b+11}+\dfrac{\sqrt{c}}{c+11}\)
\(=\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\dfrac{11\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2\left(\sqrt{c}+\sqrt{a}\right)^2}}\)
\(=\dfrac{11.11}{\sqrt{\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\right]\left[\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)\right]\left[\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\right]}}\)
\(=\dfrac{22}{\sqrt{\left(a+11\right)\left(b+11\right)\left(c+11\right)}}\)