`a)Q=((x-2\sqrt{x})/(x-4)-(x-x\sqrt{x}-6)/(x+\sqrt{x}-2)+(\sqrt{x}+1)/(1-\sqrt{x}))*(x+39)/(x+3\sqrt{x}-10)`
`=((\sqrt{x}(\sqrt{x}-2))/((\sqrt{x}+2)(\sqrt{x}-2))-(x-x\sqrt{x}-6)/((\sqrt{x}+2)(\sqrt{x}-1))-(\sqrt{x}+1)/(\sqrt{x}-1))*(x+39)/(x+3\sqrt{x}-10)`
`=(\sqrt{x}/(\sqrt{x}+2)-(x-x\sqrt{x}-6)/((\sqrt{x}+2)(\sqrt{x}-1))-(\sqrt{x}+1)/(\sqrt{x}-1))*(x+39)/(x+3\sqrt{x}-10)`
`=(\sqrt{x}(\sqrt{x}-1)-(x-x\sqrt{x}-6)-(\sqrt{x}+1)(\sqrt{x}+2))/((\sqrt{x}-1)(\sqrt{x}+2))*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=(x-\sqrt{x}-x+x\sqrt{x}+6-(x+3\sqrt{x}+2))/((\sqrt{x}-1)(\sqrt{x}+2))*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=(x\sqrt{x}-\sqrt{x}+6-x-3\sqrt{x}-2)/((\sqrt{x}-1)(\sqrt{x}+2)*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=(x\sqrt{x}-x-4\sqrt{x}+4)/((\sqrt{x}-1)(\sqrt{x}+2))*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=(x(\sqrt{x}-1)-4(\sqrt{x}-1))/((\sqrt{x}-1)(\sqrt{x}+2))*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=((x-4)(\sqrt{x}-1))/((\sqrt{x}-1)(\sqrt{x}+2))*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=((\sqrt{x}-2)(\sqrt{x}+2))/(\sqrt{x}+2)*(x+39)/((\sqrt{x}-2)(\sqrt{x}+5))`
`=(x+39)/(\sqrt{x}+5)`
`b)Q=(x-25+64)/(\sqrt{x}+5)`
`=(x-25)/(\sqrt{x}+5)+64/(\sqrt{x}+5)`
`=(\sqrt{x}-5)+64/(\sqrt{x}+5)`
`=(\sqrt{x}+5)+64/(\sqrt{x}+5)-10`
Vì: `\sqrt{x}+5,64/(\sqrt{x}+5)>0`
Suy ra áp dụng BĐT Cauchy ta được:
`Q>=2\sqrt{(\sqrt{x}+5)*64/(\sqrt{x}+5)}-10=2\sqrt{64}-10=2*8-10=6`
Dấu "=" xảy ra: `\sqrt{x}+5=64/(\sqrt{x}+5)`
`->(\sqrt{x}+5)^2=64`
`->\sqrt{x}+5=8`
`->\sqrt{x}=3`
`->x=9(N)`
Vậy: `...`