HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) \(\dfrac{a}{c}=\dfrac{a+b}{c+d}\)
=> a(c + d) = c(a + b)
=> ac + ad = ac + bc
=> ad = bc \(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
b) \(\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
=> b(c - d) = d(a - b)
=> bc - bd = ad - bd
=> bc = ad \(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
a) 2x(22 - 3) = 32
2x.1=25
=> x = 5
b) (4x - 3)2 = 4x -3
=> (4x - 3)2 - (4x - 3) = 0
(4x-3)[(4x - 3) - 1] = 0
(4x-3)(4x - 4)=0
\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)
c) 72x + 72x+3 = 344
=> 72x(1 + 73) =344
72x . 344 = 344
=> 2x = 0 => x = 0
d) (7x - 3)2012 = (3 - 7x)2010
=> (7x - 3)2012 - (7x - 3)2010 = 0
(7x - 3)2010 [(7x - 3)2 - 1] = 0
\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)
e) (4x2 - 3)3 + 8 = 0
(4x2 - 3)3 = (-2)3
=> 4x2 - 3 = -2
4x2 = 1
x2 = 1/4
=> \(x=\pm\dfrac{1}{2}\)
a) 13.146 - 46.13 + 42.5 - 6(32 - 4)
= 13(146 - 46) + 42.5 - 6.5
= 13.100 + 5(42 - 6)
= 1300 + 50
=1350
b) 35 + [149 - 2(33.19 - 33.17)]
= 35 + {149 - 2[33(19-17)]}
= 35 + [149 - 2.54]
= 35 + 41 = 76
=> 2x(22 - 3) = 32
=> 2x.1=25
Vậy x=5
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=2\left(1-\dfrac{1}{51}\right)\)
\(=\dfrac{2.50}{51}\)\(=\dfrac{100}{51}\)
\(\dfrac{3}{4}+\dfrac{1}{4}:\left(3x\right)^2=1\)
=> \(\dfrac{1}{4}:9x^2=\dfrac{1}{4}\)
=> 9x2 = 1
=> x2 = 1/9
=> \(x=\pm\dfrac{1}{3}\)
Vậy ...
P = 2y(2011x + 12x - 2015x)
= 2y.8x
Thay x = -1; y = 2 vào P , ta được:
P = 2.2.8.(-1)
=-32
Vậy P=-32
A = \(\dfrac{3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
= \(\dfrac{3}{17}+\dfrac{43}{51}\)
= \(\dfrac{52}{51}\)
Vậy A = \(\dfrac{52}{51}\)
C = (a + 2)2 - (a + 2)(a - 2)
= (a + 2)[a + 2 - (a + 2)]
= 0
D = (3x + 4)2 - (x - 4)(x + 4) - 10x
= 9x2 + 24x + 16 - (x2 - 16) - 10x
= 8x2 + 14x + 32