a) Xét hai tam giác vuông: \(\Delta ABC\) và \(\Delta AHB\) có:
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABC\sim\Delta AHB\) (g-g)
b) Do \(\Delta ABC\sim\Delta AHB\) (cmt)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{AB}\)
\(\Rightarrow AB^2=AH.AC\)
c) Xét hai tam giác vuông: \(\Delta ABC\) và \(\Delta BHC\) có:
\(\widehat{C}\) chung
\(\Rightarrow\Delta ABC\sim\Delta BHC\) (g-g)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{BC}\)
\(\Rightarrow AB.BC=BH.AC\)
d) Do \(\Delta ABC\sim\Delta AHB\) (cmt)
\(\Delta ABC\sim\Delta BHC\) (cmt)
\(\Rightarrow\Delta AHB\sim\Delta BHC\)
\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{HC}\)
\(\Rightarrow BH^2=AH.HC\)