HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Bài 5
a) \(A\left(x\right)=5x^4-2x^3+x^2-4\)
\(B\left(x\right)=-x^5+7x^4-3x^2-9x^3+7\)
\(=-x^5+7x^4-9x^3-3x^2+7\)
b) \(2C\left(x\right)+A\left(x\right)=3C\left(x\right)-B\left(x\right)\)
\(\Rightarrow3C\left(x\right)-2C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(\Rightarrow C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=\left(5x^4-2x^3+x^2-4\right)+\left(-x^5+7x^4-9x^3-3x^2+7\right)\)
\(=5x^4-2x^3+x^2-4-x^5+7x^4-9x^3-3x^2+7\)
\(=-x^5+\left(5x^4+7x^4\right)+\left(-2x^3-9x^3\right)+\left(x^2-3x^2\right)+\left(-4+7\right)\)
\(=-x^5+12x^4-11x^3-2x^2+3\)
c) C(x) có:
- Hệ số cao nhất: -1
- Hệ số lũy thừa bậc 2: -2
- Hệ số tự do: 3
- Bậc: 5
Bài 4:
a) \(P=3x-2x^2-2x+6x^3\)
\(=\left(3x-2x\right)-2x^2+6x^3\)
\(=x-2x^2+6x^3\)
\(Q=x^2-x-2x^3+4\)
\(=4-x+x^2-2x^3\)
b) \(R=P+Q\)
\(=\left(x-2x^2+6x^3\right)+\left(4-x+x^2-2x^3\right)\)
\(=x-2x^2+6x^3+4-x+x^2-2x^3\)
\(=\left(6x^3-2x^3\right)+\left(-2x^2+x^2\right)+\left(x-x\right)+4\)
\(=4x^3-x^2+4\)
----------------------------------------------------------
\(H=P-Q\)
\(=\left(x-2x^2+6x^3\right)-\left(4-x+x^2-2x^3\right)\)
\(=x-2x^2+6x^3-4+x-x^2+2x^3\)
\(\left(6x^3+2x^3\right)+\left(-2x^2-x^2\right)+\left(x+x\right)-4\)
\(=8x^3-3x^2+2x-4\)
---------------------------------------------------
e) \(R\left(4\right)=4.4^3-4^2+4\)
\(=256-16+4\)
\(=244\)
\(H\left(-5\right)=8.\left(-5\right)^3-3.\left(-5\right)^2+2.\left(-5\right)-4\)
\(=-1000-75-10-4\)
\(=-1089\)
Bài 3
a) \(A=3x^2+x+x^4-x^3-x^2+2x\)
\(=x^4-x^3+\left(3x^2-x^2\right)+\left(x+2x\right)\)
\(=x^4-x^3+2x^2+3x\)
\(B=x^4+2x^2+x^3\)
\(=x^4+x^3+2x^2\)
b) * Đa thức A có:
- Bậc: 4
- Hệ số tự do: 0
- Hệ số cao nhất: 1
* Đa thức B có:
c) \(A+B=\left(x^4-x^3+2x^2+3x\right)+\left(x^4+x^3+2x^2\right)\)
\(=x^4-x^3+2x^2+3x+x^4+x^3+2x^2\)
\(=\left(x^4+x^4\right)+\left(-x^3+x^3\right)+\left(2x^2+2x^2\right)+3x\)
\(=2x^4+4x^2+3x\)
\(A-B=\left(x^4-x^3+2x^2+3x\right)-\left(x^4+x^3+2x^2\right)\)
\(=x^4-x^3+2x^2+3x-x^4-x^3-2x^2\)
\(=\left(x^4-x^4\right)+\left(-x^3-x^3\right)+\left(2x^2-2x^2\right)+3x\)
\(=-2x^3+3x\)
\(B-A=\left(x^4+x^3+2x^2\right)-\left(x^4-x^3+2x^2+3x\right)\)
\(=x^4+x^3+2x^2-x^4+x^3-2x^2-3x\)
\(=\left(x^4-x^4\right)+\left(x^3+x^3\right)+\left(2x^2-2x^2\right)-3x\)
\(=2x^3-3x\)
Bài 2
* \(P+Q=\left(x^5+7x^3+1\right)+\left(x^3-4x^5+2\right)\)
\(=x^5+7x^3+1+x^3-4x^5+2\)
\(=\left(x^5-4x^5\right)+\left(7x^3+x^3\right)+\left(1+2\right)\)
\(=-3x^5+8x^3+3\)
* \(P-Q=\left(x^5+7x^3+1\right)-\left(x^3-4x^5+2\right)\)
\(=x^5+7x^3+1-x^3+4x^5-2\)
\(=\left(x^5+4x^5\right)+\left(7x^3-x^3\right)+\left(1-2\right)\)
\(=5x^5+6x^3-1\)
Bài 1:
a) \(A\left(x\right)+B\left(x\right)=\left(-x^3+x^2-5x+1\right)+\left(x^3+4x-5\right)\)
\(=-x^3+x^2-5x+1+x^3+4x-5\)
\(=\left(-x^3+x^3\right)+x^2+\left(-5x+4x\right)+\left(1-5\right)\)
\(=x^2-x-4\)
b) \(A\left(x\right)-B\left(x\right)=\left(-x^3+x^2-5x+1\right)-\left(x^3+4x-5\right)\)
\(=-x^3+x^2-5x+1-x^3-4x+5\)
\(=\left(-x^3-x^3\right)+x^2+\left(-5x-4x\right)+\left(1+5\right)\)
\(=-2x^3+x^2-9x+6\)
var a:array[1..200] of integer;
x,y,i,n:integer;
begin
write('n = ');readln(n);
write('x = ');readln(x);
write('y = ');readln(y);
for i:=1 to n do
write('a[',i,' = ');readln(a[i]);
end;
if a[i] = x then a[i]:=y;
writeln('Mang sau khi thay the ');
for i:=1 to n do write(a[i]:10);
readln;
end.
var tam,a,b,i:integer;
write('a = ');readln(a);
write('b = ');readln(b);
if a < b then
tam:=a;
a:=b;
b:=tam;
for i:=a to b do
if sqrt(i) = trunc(sqrt(i)) then write(i:10);
End.
var a:string;
min,i,n:integer;
s:longint;
write('Nhap so phan tu n = ');readln(n);
write('nhap phan tu thu ',i,' = ');readln(a[i]);
writeln('Cac so vua nhap la :');
writeln('Tong cac phan tu la so le la ');
if a[i] mod 2 <> 0 then s:=s+a[i];
writeln(s);
writeln('GTNN cua mang la ');
min:=a[1];
for i:=2 to n do
if a[i] < min then min:=a[i];
write(min);
var i,n:integer;
i:=2;
while n mod i <> 0 do i:=i+1;
if i = n then write(n,' la so nguyen to')
else write(n,' khong la so nguyen to');
readln