a.\(ĐK:x\ne-2\)
\(\Leftrightarrow\dfrac{2x-1}{x+2}=\dfrac{\left(x+2\right)-x}{x-2}\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\left(tm\right)\)
b.\(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{10}{x+2}=\dfrac{\left(x-2\right)+1}{x-2}\)
\(\Leftrightarrow10=x-1\)
\(\Leftrightarrow x=11\left(tm\right)\)
c.\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\dfrac{16}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x+1}+\dfrac{2\left(x-3\right)}{x-1}\)
\(\Leftrightarrow\dfrac{16}{\left(x-1\right)\left(x+1\right)}=\dfrac{5\left(x-1\right)+\left(2x+6\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow16=5x-5+2x^2+2x+6x+6\)
\(\Leftrightarrow2x^2+13x-17=0\)
d.\(x\ne\pm2;x\ne-1\)
\(\Leftrightarrow\dfrac{x^2-6}{\left(x+1\right)\left(x+2\right)}=1-\dfrac{x}{x+2}\)
\(\Leftrightarrow\dfrac{x^2-6}{\left(x+1\right)\left(x+2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)-x\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2-6=x^2+2x+x+2-x^2-x\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)