Bài 4: Hai mặt phẳng song song

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
9.Trần Thùy Dương
Xem chi tiết
Hoàng Tử Hà
22 tháng 12 2020 lúc 22:18

Đề bài sai òi :v Vẽ hình ra đi bạn.

Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)

B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 23:09

Hướng dẫn: 

Dễ dàng nhận ra A thuộc B'G (vì AB' là đường chéo của hbh mặt bên nên là 1 trung tuyến)

Gọi M, M' lần lượt là trung điểm BC và B'C'

=> (GOB') là (AMB')

(CA'O') là (CA'M')

Có B'M'CM là hình bình hành

A'M'MA cũng là hbh 

Suy ra 2 cặp đường thẳng song song và cắt nhau => đpcm

trần khánh dương
Xem chi tiết
Hoàng Tử Hà
25 tháng 12 2020 lúc 0:02

Ta sẽ áp dụng Menelaus cho 2 tam giác BCD và ABC

À quên cái dạo đầu :v

Vì lười chụp hình nên đánh máy vậy

Tìm giao điểm giữa CD và (MNQ) trước

Gán CD vô (BCD) => giao tuyến giữa (BDC) và (MNQ) là QK (K là giao điểm của MN với BC)

=> QK cắt CD tại P => (MNQ) cắt CD tại P

Rồi giờ áp dụng Menelaus cho tam giác ABC trước

\(\dfrac{AM}{MB}.\dfrac{BK}{KC}.\dfrac{CN}{NA}=1\Leftrightarrow\dfrac{1}{2}.\dfrac{BK}{KC}.1=1\Rightarrow BK=2KC\)

Áp dụng Menelaus cho tam giác BCD

\(\dfrac{BK}{KC}.\dfrac{CP}{PD}.\dfrac{DQ}{QB}=1\Leftrightarrow2.\dfrac{CP}{PD}.1=1\Rightarrow CP=\dfrac{1}{2}PD\)

\(\Rightarrow\dfrac{CP}{CD}=\dfrac{1}{3}\)

 

yuui
Xem chi tiết
Giang
Xem chi tiết
Hảo Vũ
Xem chi tiết
:3 Cloud_
Xem chi tiết
:3 Cloud_
25 tháng 2 2021 lúc 12:55

các bạn tô đen là thấy nha

 

Trần Huyền
Xem chi tiết
Hải Đăng Nguyễn
1 tháng 11 2021 lúc 14:16

?

tanhuquynh
Xem chi tiết