Cho hình chóp S.ABCD. Gọi \(A_1\) là trung điểm của cạnh SA và \(A_2\) là trung điểm của đoạn \(AA_1\). Gọi \(\left(\alpha\right)\) và \(\left(\beta\right)\) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua \(A_1,A_2\). Mặt phẳng \(\left(\alpha\right)\) cắt các cạnh SB, SC, SD lần lượt tại \(B_1;C_1;D_1\). Mặt phẳng \(\left(\beta\right)\) cắt các cạnh SB, SC, SD lần lượt tại \(B_2;C_2;D_2\). Chứng minh :
a) \(B_1;C_1;D_1\) lần lượt là trung điểm của các cạnh SB, SC, SD
b) \(B_1B_2=B_2B;C_1C_2=C_2C;D_1D_2=D_2D\)
c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD
10: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M. N lần lượt là trung điểm của các cạnh CD và SD. Biết rằng mặt phẳng (BMN) cắt đường thẳng SA tại P. Tính tỉ số đoàn thắng SP/SA
Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, H, K lần lượt là trung điểm AD, SA, SB. a) Tìm giao tuyến d của (SAD) và (SBC) b) Tìm giao điểm N của BC và (MHK). Tứ giác MHKN là hình gì?
Cho hình chóp S.ABCD có đáy là hình thang (AD//BC,AD>BC). Gọi M,N,E lần lượt là trung điểm của AB,CD,SA .
a) Chứng minh rằng : (MEN) // (SBC)
b) Trong tam giác SAD vẽ EF // AD (F\(\in\) SD) . Chứng minh rằng F là giao điểm của mặt phẳng (MNE) với SD . Từ đó suy ra thiết diện của hình chóp khi cắt bởi mặt phẳng (MNE) là hình gì ?
Cho tứ diện ABCD gọi đường thằng G1,G2 lần lươc là trọng tâm của tam giác ABC và ABD
a) tìm giao tuyến của 2 mặt phẳng (AG1G2) và (BCD)
b) chứng minh G1G2 // (ACD)
c) xác định tiết diện cắt 1 mặt phẳng AG1G2
Mn giúp em với ạ . Em cần gấp á!
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với \(AI=x,\left(0< x< a\right)\). Lấy \(\left(\alpha\right)\) là mặt phẳng đi qua I và song song với mặt phẳng (SBD)
a) Xác định thiết diện của mặt phẳng \(\left(\alpha\right)\) với hình chóp S.ABCD
b) Tìm diện tích S của thiết diện ở câu a) theo \(a,b,x\). Tìm \(x\) để S lớn nhất ?
Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Xz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng \(\left(\alpha\right)\) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A', B', C' và D'
a) Chứng minh rằng (Ax, By) // (Cz, Dt) và (Ax, Dt) // (By, Cz)
b) Tứ giác A'B'C'D' là hình gì ?
c) Chứng minh AA' + CC' = BB' + DD'
Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm cảu AB, SC; E là trung điểm SA. Thiết diện hình chóp khi cắt bởi mặt phẳng ( EMN ).