Bài 4. Hình bình hành - Hình thoi

Giải bài 6 trang 80 (SGK Toán 8 tập 1– Chân trời sáng tạo)

Hướng dẫn giải

Xét \(\Delta HAE\) và \(\Delta FBE\) ta có:

\(AH = BF\) (gt)

\(\widehat {{\rm{HAE}}} = \widehat {{\rm{FBE}}} = 90^\circ \) (gt)

\(AE = BE\) (gt)

Suy ra \(\Delta HAE = \Delta FBE\) (c-g-c)

Suy ra \(HE = EF\)

Chứng minh tương tự ta có: \(EF = GF\); \(GF = GH\); \(GH = HE\)

Suy ra \(HE = EF = FG = GH\)

Suy ra \(EFGH\) là hình thoi

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải bài 7 trang 81 (SGK Toán 8 tập 1– Chân trời sáng tạo)

Hướng dẫn giải

Do \(ABCD\) là hình thoi nên hai đường chéo vuông góc với nhau tạo ra 4 góc vuông.

Áp dụng ĐL Pythagore vào 1 trong các tam giác vuông, ta có độ dài cạnh hình vuông là:

\(\sqrt {{{\left( {\frac{6}{2}} \right)}^2} + {{\left( {\frac{8}{2}} \right)}^2}}  = \sqrt {9 + 16}  = \sqrt {25}  = 5\) (cm)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải bài 8 trang 81 (SGK Toán 8 tập 1– Chân trời sáng tạo)

Hướng dẫn giải

a) Xét tứ giác \(ABDC\) có:
\(M\) là trung điểm của \(BC\) (gt)
\(M\) là trung điểm của \(AD\) (do \(D\) đối xứng với \(A\) qua \(BC\))
Suy ra \(ABDC\) là hình bình hành
b) Do \(\Delta ABC\) cân tại \(A\), có \(AM\) là trung tuyến (gt)
Suy ra \(AM\) là đường cao, trung trực, phân giác
Suy ra \(AM\) vuông góc \(BM\) và \(CM\)
Xét tứ giác \(OAMB\) ta có:
\(E\) là trung điểm của \(OM\) và \(AB\) (gt)
Suy ra \(OAMB\) là hình bình hành
Suy ra \(OB\) // \(AM\); \(OA\) // \(MB\); \(OA = BM\); \(OB = AM\)
Mà \(AM \bot BM\) (cmt)
Suy ra: \(AM \bot OA\); \(OB \bot MB\)
Mà \(AM\) // \(OB\) (cmt)
Suy ra \(OB \bot OA\)
Xét \(\Delta AOB\) và \(\Delta MBO\) (các tam giác vuông) ta có:
\(\widehat {{\rm{AOB}}} = \widehat {{\rm{OBM}}} = 90^\circ \)
\(AO = MB\) (cmt)
\(OB = AM\) (cmt)
Suy ra \(\Delta AOB = \Delta MBO\) (c-g-c)
Suy ra \(OM = AB\)
c) \(OM = AB\) (cmt)
Mà \(EM = EO = \frac{1}{2}OM\); \(EA = EB = \frac{1}{2}AB\)
Suy ra \(EO = EA = EM = EB\) (1)
Xét \(\Delta ABC\) cân ta có: \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Mà \(EA = EB = \frac{1}{2}AB\); \(FA = FC = \frac{1}{2}AC\) (gt)
Suy ra \(AE = EB = FA = FM\) (2)
Xét \(\Delta BEM\) và \(\Delta CMF\) ta có:
\(BE = CF\) (cmt)
\(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
\(BM = CM\) (gt)
Suy ra \(\Delta BEM = \Delta CFM\) (c-g-c)
Suy ra \(EM = FM\) (3)
Từ (1), (2), (3) suy ra \(AE = AF = FM = ME\)
Suy ra \(AEMF\) là hình thoi

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải bài 9 trang 81 (SGK Toán 8 tập 1– Chân trời sáng tạo)

Hướng dẫn giải

Tìm các hình bình hành và hình thang có trong Hình 22. (ảnh 2)

HBH: (4), (6), Hình ghép bởi cả 7 hình

Hình thang: (4), (6), Hình ghép bởi cả 7 hình, Hình ghép bởi các hình (2), (3), (4), (5), (6) và (7);

• Hình ghép bởi các hình (4), (5), (6) và (7);

• Hình ghép bởi các hình (4), (5) và (6);

• Hình ghép bởi các hình (5), (6) và (7);

• Hình ghép bởi các hình (4) và (5);

• Hình ghép bởi các hình (5) và (6);

• Hình ghép bởi các hình (6) và (7).

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)