Cho hai đường tròn đồng tâm (O; R) và (O; \(\frac{{R\sqrt 3 }}{2}\)). Một tiếp tuyến của đường tròn nhỏ cắt đường tròn lớn tại hai điểm A và B. Tính số đo cung AB.
Cho hai đường tròn đồng tâm (O; R) và (O; \(\frac{{R\sqrt 3 }}{2}\)). Một tiếp tuyến của đường tròn nhỏ cắt đường tròn lớn tại hai điểm A và B. Tính số đo cung AB.
Xác định số đo các cung \(\overset\frown{AB};\overset\frown{BC};\overset\frown{CA}\) trong mỗi hình vẽ sau:
Thảo luận (1)Hướng dẫn giảia) Xét tam giác ABC, ta có: \(\widehat{ACB}={{180}^{o}}-\widehat{CBA}-\widehat{BAC}={{180}^{o}}-{{60}^{o}}-{{67}^{o}}={{53}^{o}}\)
Ta có sđ\(\overset\frown{AB}\) = 2.\(\widehat{ACB}\) = 2. 53o = 106o (Vì \(\overset\frown{AB}\) và \(\widehat{ACB}\) cùng chắn cung AB)
Ta có sđ\(\overset\frown{BC}\) = 2.\(\widehat{BAC}\) = 2. 67o = 134o (Vì \(\overset\frown{BC}\) và \(\widehat{BAC}\) cùng chắn cung BC)
Ta có sđ\(\overset\frown{AC}\) = 2.\(\widehat{ABC}\) = 2. 60o = 120o (Vì \(\overset\frown{AC}\) và \(\widehat{ABC}\) cùng chắn cung AC).
b) Ta có sđ\(\overset\frown{AC}\) và góc ở tâm \(\widehat{COA}\) cùng chắn cung AC
suy ra sđ\(\overset\frown{AC}\) = \(\widehat{COA}\) = 135o.
Nối O với B.
Xét tam giác OAB có AO = OB (= R) suy ra tam giác OAB cân tại A.
Mặt khác, \(\widehat {OAB} = {60^o}\) nên tam giác OAB là tam giác đều.
Ta có sđ\(\overset\frown{AB}\) = \(\widehat{AOB}\) = \({{60}^{o}}\) (Vì \(\overset\frown{AB}\) và \(\widehat{AOB}\) cùng chắn cung AB)
Suy ra sđ\(\overset\frown{BC}\) = 360o - sđ\(\overset\frown{AB}\) - sđ\(\overset\frown{AC}\) = 360o - \({60^o}\) - 135o = 165o.
(Trả lời bởi datcoder)
Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung nhỏ AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng \(\widehat {MSD} = 2\widehat {MBA}\).
Thảo luận (1)Hướng dẫn giảiTa có SM \( \bot \) OM (Tính chất tiếp tuyến)
Suy ra tam giác OSM vuông tại M
Ta có \(\widehat {MSO} + \widehat {MOS} = {90^o}\)
Và AB\( \bot \)CD (gt)
Suy ra \(\widehat {MOS} + \widehat {MOA} = {90^o}\)
Nên \(\widehat {MSO} = \widehat {MOA}\) hay \(\widehat {MSD} = \widehat {MOA}\) (1)
Ta có \(\widehat {MOA} = 2\widehat {MBA}\) (góc ở tâm cùng chắn cung AM) (2)
Từ (1) và (2) suy ra \(\widehat {MSD} = 2\widehat {MBA}\).
(Trả lời bởi datcoder)