Ta có SM \( \bot \) OM (Tính chất tiếp tuyến)
Suy ra tam giác OSM vuông tại M
Ta có \(\widehat {MSO} + \widehat {MOS} = {90^o}\)
Và AB\( \bot \)CD (gt)
Suy ra \(\widehat {MOS} + \widehat {MOA} = {90^o}\)
Nên \(\widehat {MSO} = \widehat {MOA}\) hay \(\widehat {MSD} = \widehat {MOA}\) (1)
Ta có \(\widehat {MOA} = 2\widehat {MBA}\) (góc ở tâm cùng chắn cung AM) (2)
Từ (1) và (2) suy ra \(\widehat {MSD} = 2\widehat {MBA}\).
Đúng 0
Bình luận (0)