Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn

Bài 1 (SGK Cánh Diều trang 25)

Hướng dẫn giải

a. \(\left\{ \begin{array}{l}x - 2y = 0\,\,\,\,\,\,\,\,\left( 1 \right)\\3x + 2y = 8\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ phương trình (1), ta có: \(x = 2y\)  (3)

Thay vào phương trình (2), ta được: \(3.2y + 2y = 8\)   (4)

Giải phương trình (4):

\(\begin{array}{l}3.2y + 2y = 8\\6y + 2y = 8\\8y = 8\\y = 1\end{array}\)

Thay giá trị \(y = 1\) vào phương trình (3), ta có: \(x = 2.1 = 2\).

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {2;1} \right)\).

b.\(\left\{ \begin{array}{l} - \frac{3}{4}x + \frac{1}{2}y =  - 2\,\,\,\,\,\,\,\,\left( 1 \right)\\\frac{3}{2}x - y = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ phương trình (2), ta có: \(y = \frac{3}{2}x - 4\)        (3)

Thay vào phương trình (1), ta được: \( - \frac{3}{4}x + \frac{1}{2}\left( {\frac{3}{2}x - 4} \right) =  - 2\)  (4)

Giải phương trình (4):

\(\begin{array}{l} - \frac{3}{4}x + \frac{1}{2}\left( {\frac{3}{2}x - 4} \right) =  - 2\\ - \frac{3}{4}x + \frac{3}{4}x - 2 =  - 2\\0 = 0\end{array}\)

Do đó, phương trình (4) có vô số nghiệm.

Vậy hệ phương trình đã cho có vô số nghiệm.

c. \(\left\{ \begin{array}{l}4x - 2y = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + y = 0\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ phương trình (2), ta có: \(y = 2x\)     (3)

Thay vào phương trình (1), ta được: \(4x - 2.2x = 1\) (4)

Giải phương trình (4):

\(\begin{array}{l}4x - 4x = 1\\0x = 1\end{array}\)

Do đó, phương trình (4) vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 25)

Hướng dẫn giải

a. \(\left\{ \begin{array}{l}2x + y = 4\,\,\,\,\left( 1 \right)\\x - y = 2\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Cộng từng vế hai phương trình (1) và (2), ta nhận được phương trình:

\(3x = 6\), tức là \(x = 2\)

Thế \(x = 2\) vào phương trình (2), ta nhận được phương trình: \(2 - y = 2\)   (3)

Giải phương trình (3), ta có: \(y = 0\).

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {2;0} \right)\).

b. \(\left\{ \begin{array}{l}4x + 5y = 11\,\,\,\left( 1 \right)\\2x - 3y = 0\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình (2) với 2 và giữ nguyên phương trình (1), ta được hệ phương trình sau: \(\left\{ \begin{array}{l}4x + 5y = 11\,\,\,\,\,\,\left( 3 \right)\\4x - 6y = 0\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế hai phương trình (3) và (4), ta nhận được phương trình: \(11y = 11\) (5)

Giải phương trình (5), ta có:

\(\begin{array}{l}11y = 11\\\,\,\,\,\,y = 1\end{array}\)

Thế giá trị \(y = 1\) vào phương trình (2), ta được phương trình: \(2x - 3.1 = 0\)  (6)

Giải phương trình (6):

\(\begin{array}{l}2x - 3.1 = 0\\\,\,\,\,\,\,\,\,\,\,\,2x = 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{3}{2}\end{array}\)

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {\frac{3}{2};1} \right)\).

c. \(\left\{ \begin{array}{l}12x + 18y =  - 24\,\,\,\left( 1 \right)\\ - 2x - 3y = 4\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Chia hai vế của phương trình (1) với \( - 6\) và giữ nguyên phương trình (2), ta được hệ phương trình sau: \(\left\{ \begin{array}{l} - 2x - 3y = 4\,\,\,\left( 3 \right)\\ - 2x - 3y = 4\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế của phương trình (3) và (4), ta nhận được phương trình: \(0x + 0y = 0\) (5)

Do đó phương trình (5) có vô số nghiệm.

Vậy hệ phương trình đã cho có vô số nghiệm.

d. \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 6y = 10\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\)

Chia hai vế của phương trình (2) với \( - 2\) và giữ nguyên phương trình (1), ta được hệ phương trình sau: \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\left( 3 \right)\\x - 3y =  - 5\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế của phương trình (3) và (4), ta nhận được phương trình: \(0y = 10\)   (5)

Do đó phương trình (5) vô nghiệm.

Vậy hệ phương trình đã cho có vô nghiệm.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 25)

Hướng dẫn giải

a.

Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(A\left( {1; - 2} \right)\) nên ta có phương trình: \(a + b =  - 2\,\,\,\,\left( 1 \right)\)

Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 2; - 11} \right)\) nên ta có phương trình: \( - 2a + b =  - 11\,\,\left( 2 \right)\)Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}a + b =  - 2\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2a + b =  - 11\,\,\,\left( 2 \right)\end{array} \right.\)

Ta giải hệ phương trình trên:

+ Trừ từng vế của phương trình (1) và (2), ta nhận được phương trình \(3a = 9\), tức là \(a = 3\).

+ Thế giá trị \(a = 3\) vào phương trình (1), ta được phương trình: \(3 + b =  - 2\)   (3)

+ Giải phương trình (3): \(b =  - 5\).

+ Do đó hệ phương trình đã cho có nghiệm \(\left( {a;b} \right) = \left( {3; - 5} \right)\).

Vậy ta có hàm số: \(y = 3x - 5\).

b.

Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(A\left( {2;8} \right)\) nên ta có phương trình: \(2a + b = 8\,\,\,\left( 1 \right)\)

Do đồ thị của hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 4;5} \right)\) nên ta có phương trình: \( - 4a + b = 5\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + b = 8\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 4a + b = 5\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Ta giải hệ phương trình trên:

+ Trừ từng vế của phương trình (1) và (2), ta nhận được phương trình \(6a = 3\) tức là \(a = \frac{1}{2}\).

+ Thế giá trị \(a = \frac{1}{2}\) vào phương trình (1), ta được phương trình: \(2.\frac{1}{2} + b = 8\)  (3)

+ Giải phương trình (3):

\(\begin{array}{l}1 + b = 8\\\,\,\,\,\,\,b = 7\end{array}\)

+ Do đó hệ phương trình đã cho có nghiệm: \(\left( {a;b} \right) = \left( {\frac{1}{2};7} \right)\).

Vậy ta có hàm số: \(y = \frac{1}{2}x + 7\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Cánh Diều trang 25)

Hướng dẫn giải

Đổi: 1 giờ 30 phút = \(\frac{3}{2}\) giờ

        2 giờ 6 phút = \(\frac{{21}}{{10}}\) giờ

Gọi vận tốc của ca nô khi nước yên lặng là: \(x\) \(\left( {km/h,0 < y < x} \right)\).

      Vận tốc của dòng nước là: \(y\,\,\left( {km/h,0 < y < x} \right)\).

+ Vận tốc của ca nô khi xuôi dòng là: \(x + y\,\,\left( {km/h} \right)\);

+ Thời gian ca nô xuôi dòng là: \(\frac{{42}}{{x + y}}\) (giờ);

+ Do thời gian ca nô xuôi dòng hết 1 giờ 30 phút nên ta có phương trình: \(\frac{{42}}{{x + y}} = \frac{3}{2}\)  (1)

+ Vận tốc của ca nô khi ngược dòng là: \(x - y\,\,\left( {km/h} \right)\);

+ Thời gian ca nô ngược dòng là: \(\frac{{42}}{{x - y}}\) (giờ);

+ Do thời gian ca nô ngược dòng hết 2 giờ 6 phút nên ta có phương trình: \(\frac{{42}}{{x - y}} = \frac{{21}}{{10}}\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{{42}}{{x + y}} = \frac{3}{2}\,\,\,\left( 1 \right)\\\frac{{42}}{{x - y}} = \frac{{21}}{{10}}\,\,\left( 2 \right)\end{array} \right.\)

Ta giải hệ phương trình trên:

Từ phương trình (1), ta có:

\(\begin{array}{l}\frac{{42}}{{x + y}} = \frac{3}{2}\\3x + 3y = 84\end{array}\)

\(x + y = 28\) (3)

Từ phương trình (2), ta có:

\(\begin{array}{l}\frac{{42}}{{x - y}} = \frac{{21}}{{10}}\\21x - 21y = 420\end{array}\)

\(x - y = 20\) (4)

Cộng từng vế của phương trình (3) và (4), ta được: \(2x = 48\) tức là \(x = 24\).

Thay giá trị \(x = 24\) vào phương trình (4), ta được: \(24 + y = 28\) (5)

Giải phương trình (5): \(y = 4\).

Do đó hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {24;4} \right)\).

Vậy vận tốc của ca nô khi nước yên lặng là 24km/h;

      Vận tốc của dòng nước là 4km/h.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Cánh Diều trang 25)

Hướng dẫn giải

Gọi \(x,y\) (triệu đồng) là số tiền bác Phương đầu tư cho mỗi khoản \(\left( {0 < x,y < 800} \right)\).

Do bác Phương gửi tổng 800 triệu đồng cho hai khoản đầu tư nên ta có phương trình:

\(x + y = 800\) (1)

Lãi suất cho khoản đầu tư thứ nhất là 6%/năm, số tiền là: \(6\% .x = 0,06x\)

Lãi suất cho khoản đầu tư thứ hai là 8%/năm, số tiền là: \(8\% y = 0,08y\)

Tổng số tiền lãi thu được là 54 triệu đồng, nên ta có phương trình:

\(0,06x + 0,08y = 54\)

Hay \(6x + 8y = 5400\) (2)

Từ (1) và (2) ta có hệ: \(\left\{ \begin{array}{l}x + y = 800\\6x + 8y = 5400\end{array} \right.\)

Nhân phương trình (1) với 3, chia phương tình (2) cho 2 ta có hệ phương trình mới:

\(\left\{ \begin{array}{l}3x + 3y = 2400\,\,\,\left( 3 \right)\\3x + 4y = 2700\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế của phương trình (4) cho phương trình (3), ta được: \(y = 300\).

Thế \(y = 300\) vào phương trình (1) ta được\(x + 300 = 800\), tức là: \(x = 500\)

Vậy số tiền bác Phương đầu tư cho khoản thứ nhất là 500 triệu đồng, khoản thứ hai là 300 triệu đồng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 6 (SGK Cánh Diều trang 25)

Hướng dẫn giải

Gọi \(x\) (triệu đồng) là giá niêm yết của tủ lạnh \(\left( {0 < x < 25,4} \right)\);

Gọi \(y\) (triệu đồng) là giá niêm yết của tủ lạnh \(\left( {0 < y < 25,4} \right)\).

Giá niêm yết một tủ lạnh và một máy giặt có tổng số tiền là 25,4 triệu đồng nên ta có phương trình: \(x + y = 25,4\,\,\left( 1 \right)\)

Giá của tủ lạnh sau khi được giảm là: \(x - 40\% x = 60\% x = 0,6x\) (triệu đồng)

Giá của máy giặt sau khi được giảm là: \(y - 25\% y = 75\% y = 0,75y\) (triệu đồng)

Cô Liên đã mua hai mặt hàng trên với tổng số tiền là 16,77 triệu đồng nên ta có:

\(0,6x + 0,75y = 16,77\) hay \(60x + 75y = 1677\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 25,4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\60x + 75y = 1677\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân phương trình (1) với 60 và giữ nguyên phương trình (2) ta được hệ phương trình mới:

\(\left\{ \begin{array}{l}60x + 60y = 1524\,\,\,\,\left( 3 \right)\\60x + 75y = 1677\,\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế của phương trình (4) cho phương trình (3), ta được \(15y = 153\), tức là \(y = 10,2\).

Thay \(y = 10,2\) vào phương trình (1) ta được \(x + 10,2 = 25,4\) hay \(x = 15,2\).

Vậy giá lúc đầu của tủ lạnh là 15,2 (triệu đồng);

       Giá lúc đầu của máy giặt là 10,2 (triệu đồng).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 7 (SGK Cánh Diều trang 25)

Hướng dẫn giải

a. Theo định luật bảo toàn nguyên tố đối với Fe và Cl, ta có: \(\left\{ \begin{array}{l}x = 2\\2y = 3x\end{array} \right.\)

Giải hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\2y = 3x\,\,\,\left( 1 \right)\end{array} \right.\)

Thay \(x = 2\) vào phương trình (1) ta được \(2y = 3.2\) (2)

Giải phương trình (2):

\(\begin{array}{l}2y = 6\\\,\,\,y = 3\end{array}\)

Do đó, hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {2;3} \right)\).

Vậy ta có phương trình sau cân bằng: \(2Fe + 3C{l_2} \to 2FeC{l_3}\),

b. Theo định luật bảo toàn nguyên tố đối với Fe và Cl, ta có: \(\left\{ \begin{array}{l}x + 1 = y\\3x = 2y\end{array} \right.\)

Giải hệ phương trình: \(\left\{ \begin{array}{l}x + 1 = y\\3x = 2y\,\,\,\left( 1 \right)\end{array} \right.\)

Thay \(y = x + 1\) vào phương trình (1), ta được \(3x = 2.\left( {x + 1} \right)\) (2)

Giải phương trình (2), ta được:

\(\begin{array}{l}3x = 2\left( {x + 1} \right)\\3x = 2x + 2\\3x - 2x = 2\\x = 2\end{array}\)

Thay \(x = 2\) vào phương trình \(y = x + 1\) ta được: \(y = 2 + 1 = 3\).

Do đó, hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {2;3} \right)\).

Vậy ta có phương trình sau cân bằng: \(2FeC{l_3} + Fe \to 3FeC{l_2}\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)