Bài 1. Góc lượng giác Toán

Bài tập 2 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

\(a,\dfrac{\pi}{12}=\dfrac{180\cdot\dfrac{\pi}{12}}{\pi}=15^o\\ b,-5=\dfrac{-180\cdot5}{\pi}=\left(-\dfrac{900}{\pi}\right)^o\\ c,\dfrac{13\pi}{9}=\dfrac{180\cdot\dfrac{13\pi}{9}}{\pi}=260^o\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài tập 3 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải
Thảo luận (1)

Bài tập 4 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

\(\dfrac{31\pi}{7}=\dfrac{3\pi}{7}+2\cdot2\pi\\ -\dfrac{25\pi}{7}=-\dfrac{4\pi}{7}-3\pi\\ \dfrac{10\pi}{7}=\dfrac{3\pi}{7}+\pi\)

\(\Rightarrow\dfrac{31\pi}{7}\) có cùng biểu diễn trên đường tròn lượng giác với góc \(\dfrac{3\pi}{7}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài tập 5 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Ta có: \(\left(OA,OM\right)=120^o+k\cdot360^o,k\in Z\\ \left(OA,ON\right)=-75^o+k\cdot360^o,k\in Z\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài tập 6 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Vì mâm bánh xe ô tô được chia thành năm phần bằng nhau nên mỗi phần có số đo bằng \(\dfrac{360^o}{5}=72^o\)

Ta có: \(\left(ON,OM\right)=\left(ON,Ox\right)+\left(Ox,OM\right)\\ \Rightarrow\left(ON,Ox\right)=99^o\)

Công thức số đo tổng quát của góc lượng giác \(\left(ON,Ox\right)=99^o+k\cdot360^o,k\in Z\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài tập 7 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Bài tập 8 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

+ Xét góc lượng giác \(\frac{\pi }{2} + k\frac{{2\pi }}{3}\)

Với k = 0 thì \(\frac{\pi }{2} + 0.\frac{{2\pi }}{3} =\frac{\pi }{2} \) được biểu diễn bởi điểm B.

Với k = 1 thì \(\frac{\pi }{2} + 1.\frac{{2\pi }}{3} =\frac{7\pi }{6} \) được biểu diễn bởi điểm C.

Với k = 2 thì \(\frac{\pi }{2} + 2.\frac{{2\pi }}{3} =\frac{11\pi }{6} \) được biểu diễn bởi điểm D.

+ Xét góc lượng giác \(\frac{\pi }{2} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\)

Với k = 0 thì \(\frac{\pi }{2} + 0.\frac{{\pi }}{3} =\frac{\pi }{2} \) được biểu diễn bởi điểm B.

Với k = 1 thì \(\frac{\pi }{2} + 1.\frac{{\pi }}{3} =\frac{5\pi }{6} \) không biểu diễn bởi điểm nào.

+ Xét góc lượng giác \(\frac{{ - \pi }}{6} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\)

Với k = 1 thì \(\frac{{ - \pi }}{6}+ 1.\frac{{2\pi }}{3} =\frac{\pi }{2} \) được biểu diễn bởi điểm B.

Với k = 2 thì \(\frac{{ - \pi }}{6}+ 2.\frac{{2\pi }}{3} =\frac{7\pi }{6} \) được biểu diễn bởi điểm C.

Với k = 3 thì \(\frac{{ - \pi }}{6} + 3.\frac{{2\pi }}{3} =\frac{11\pi }{6} \) được biểu diễn bởi điểm D.

Vậy các điểm B, C, D trên cánh quạt động cơ máy bay trong Hình 16 có thể được biểu diễn cho các góc lượng giác 

\(\frac{\pi }{2} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right);\frac{{ - \pi }}{6} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\,\,\left( {k \in \mathbb{Z}} \right)\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài tập 9 (trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Ta có: \(\alpha=\left(\dfrac{1}{60}\right)^o\Rightarrow\alpha=\dfrac{\left(\pi\cdot\dfrac{1}{60}\right)}{180}=\dfrac{\pi}{10800}\) 

Vậy một hải lí có độ dài bằng: 

\(l=\dfrac{\pi Rn^o}{180^o}=\dfrac{\pi\cdot6371\cdot\left(\dfrac{1}{60}\right)^o}{180^o}\approx1,85\left(km\right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)