\(y'=\dfrac{-2-m}{\left(x-1\right)^2}.e^{\dfrac{2x+m}{x-1}}\)
\(\Rightarrow\) Hàm đơn điệu trên miền xác định
TH1: \(\left\{{}\begin{matrix}-2-m< 0\\y\left(2\right)=e^5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\\dfrac{m+4}{1}=5\end{matrix}\right.\) \(\Rightarrow m=1\)
TH2: \(\left\{{}\begin{matrix}-2-m>0\\y\left(4\right)=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\\dfrac{m+8}{3}=5\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Vậy \(m=1\)