Cho \(D=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}+\dfrac{xy+\sqrt{xy}}{\sqrt{xy}+1}\)
a. Tìm điều kiện của x,y để D có nghĩa
b. Chứng minh D là số nguyên với mọi \(x,y\in\) N*
Cho \(x;y>0\) thỏa mãn \(x+y\le1\). Chứng minh \(\dfrac{1}{x^2+y^2}+\dfrac{2020}{xy}\ge8082\)
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y
B1
Cho x,y>0 và xy=1. Chứng minh (x+y+1)(\(x^2+y^2\))+\(\frac{4}{x+y}\ge8\)
B2 Cho x,y,z>0 và xyz=1. CMR
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\ge4\)
B3 Cho a là số dương . CMR \(\frac{a^2}{4}+\frac{9}{a+1}\ge4\)
1. a)Tìm x , biết \(\sqrt{4x^2-4x+1}=3\)
b) Chứng minh \(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)=x-y\) với x > 0 ; y> 0
Cho 3 số dương x,y,z thoả mãn điều kiện : xy+yz+zx=1. Tính:
\(A=x\sqrt{\dfrac{\left(y^2+1\right)\left(z^2+1\right)}{x^2+1}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mn giúp e vs an, e đang cần gấp, cảm ơn mn nhiều lắm lắm
a) cho x,y > 0 thoả mãn x+y=2 chứng minh 0< xy < 1 b) tìm GTLN của A = \(x^2y^2\left(x^2+y^2\right)\)
Chứng minh bất đẳng thức: \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\) với x,y \(\ge\) 1
Chứng minh (với những giá trị của biến làm cho biểu thức có nghĩa)
a) \(\dfrac{\left(3\sqrt{xy}-6y-2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}+\dfrac{2\sqrt{xy}}{x-y}\right)=\sqrt{x}+\sqrt{y}\)
So sánh:
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\) với \(B=\sqrt{5}-\dfrac{3}{2}\)
Giúp với mình sắp cần rồi