Theo đề ta có:
x+y=-60
\(\frac{x}{y}=\frac{17}{3}\Rightarrow3x=17y\Rightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tc dãy tỉ
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
\(\Rightarrow\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}\)
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-30\)
\(\Rightarrow\begin{cases}\frac{x}{17}=-30\rightarrow x=\left(-30\right)\cdot17=-510\\\frac{y}{3}=-30\rightarrow y=\left(-30\right)\cdot3=-90\end{cases}\)