Giải:
a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)
\(\Rightarrow x=10k,y=6k\)
Mà \(xy=60\)
\(\Rightarrow10k6k=60\)
\(\Rightarrow60k^2=60\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=10;y=6\)
+) \(k=-1\Rightarrow x=-10;y=-6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(10;6\right);\left(-10;-6\right)\)
b) Hình như đề sai !!!
c) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)
( x, y cùng dấu )
Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
b) $$\dfrac{x-1}2 = \dfrac{y-2}3 = \dfrac{z-3}3$$
$$\iff \dfrac{x-1}2 = \dfrac{2y-4}{6} = \dfrac{3z - 9}9$$
Áp dụng tính chất dãy tỉ số bằng nhau
$$\dfrac{x-1}2 = \dfrac{2y-4}{6} = \dfrac{3z - 9}9 = \dfrac{(x-1) - (2y-4) + (3z - 9)}{2 - 6 + 9} = \dfrac{(x - 2y + 3z) - 6}5 = \dfrac{16 - 6}5 = 2$$
+) $\dfrac{x-1}2 = 2 \iff x = 5$
+) $\dfrac{2y-4}6 = 2 \iff y = 8$
+) $\dfrac{3z-9}9 = 2 \iff z = 9$