\(x^{n-1}\left(x-y\right)+y\left(x^{n-1}-y^{n-1}\right)\)
\(=x^x-x^{n-1}.y+x^{n-1}.y-y^y\)
\(=x^x-y^y\)
Mk ko hiểu đề bài cho lắm nên mk cứ làm tạm
\(x^{n-1}\left(x-y\right)+y\left(x^{n-1}-y^{n-1}\right)=x^n-x^{n-1}y+x^{n-1}y-y^n\)
=\(x^n-y^n\)
\(x^{n-1}\left(x-y\right)+y\left(x^{n-1}-y^{n-1}\right)\)
\(=x^x-x^{n-1}.y+x^{n-1}.y-y^y\)
\(=x^x-y^y\)
Mk ko hiểu đề bài cho lắm nên mk cứ làm tạm
\(x^{n-1}\left(x-y\right)+y\left(x^{n-1}-y^{n-1}\right)=x^n-x^{n-1}y+x^{n-1}y-y^n\)
=\(x^n-y^n\)
1. Cho x+y+z=0. Chứng minh rằng: (x2+y2+z2)2=2(x4+y4+z4)
2. Cho x2-y2=1. Tính giá trị biểu thức: A=2(x6-y6)-3(x4+y4)
3. Phân tích thành nhân tử: (x-3)(x-1)(x+1)(x+3)+15
4. Với n thuộc N, n>1
Chứng minh: a) 20n-1
b) 1000n+1
là các hợp số
Rút gọn biểu thức:
a) x ( x – y ) + y ( x – y )
b) xn – 1 ( x + y ) – y( xn – 1 + yn – 1 ).
cho x, y thuộc N và x+y chia hết cho 13 thì
x^n*(x+1)+x^n*(y-1) chia hết cho 13
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
bài 1: Tính giá trị biểu thức
A = x(3x-y)-(3x+1)y tại x = 4/3; y = -1
B = \(3\frac{1}{117}.\frac{1}{119}-\frac{4}{117}.5\frac{118}{119}-\frac{8}{39}\)
Bài 2: Tìm m và n để hai đa thức đồng nhất:
f(x)=(m-1)x^2+3x+1
g(x) = x^2-nx+1
Bài 3 - Đề 1
Cho x \(\ne\) y và a1 = x + m , a2 = a1 + m , y = a2 + m , b1 = x + n , b2 = b1 + n , b3 = b2 + n , y = b3 + n
Tính A = \(\frac{a_1-a_2}{b_1-b_2}\)
Bài1;
a, cho x-y=7 . Tính giá trị biểu thức
M= x^2.(x+1)-y^2.(y-1) + xy - 3xy .(x-y+1)-95
b, cho x+y =5. Tính gtri biểu thức
N= 3x^2-2x +3y^2-2y+6xy -100
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .