B1: Cho hình thang cân ABCD ( AB // CD; AB < CD ). Biết AC cắt BD tại O và góc DOC = 600. Gọi I, J, K theo thứ tự là trung điểm OD, OA, BC. CM tam giác IJK đều.
B2: Cho x, y thỏa mãn 2x + y = 6.
Tìm giá trị nhỏ nhất của biểu thức A = \(4x^2+y^2\)
B3: Cho x, y thỏa mãn \(x^2+y^2=50.\) Tìm giá trị nhỏ nhất và lớn nhất của biểu thức B = xy
Cho biểu thức A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)Cho a+b+c = 1 .Hãy tìm giá trị nhỏ nhất của A
g
a) Chứng minh rằng với mọi số nguyên x,y thì :
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương
b) Cho \(a_1,a_2,...,a_{2016}\) là các số tự nhiên có tổng chia hết cho 3.
Chứng minh rằng : \(A=a_1^3+a_2^3+a_3^3+...+a_{2016}^3\) chia hết cho 3.
bài 1: Tính giá trị biểu thức
A = x(3x-y)-(3x+1)y tại x = 4/3; y = -1
B = \(3\frac{1}{117}.\frac{1}{119}-\frac{4}{117}.5\frac{118}{119}-\frac{8}{39}\)
Bài 2: Tìm m và n để hai đa thức đồng nhất:
f(x)=(m-1)x^2+3x+1
g(x) = x^2-nx+1
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .
x\(^{n-1}\)(x-y)+y(x\(^{n-1}\)-y\(^{n-1}\))
đề bài :làm tính nhân
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Bài 1 : Cho x2 - x = 3 . Tính giá trị biểu thức M= x4 - 2x3 +3x2 -2x +2
Bài 2 : CM : biểu thức A= n4 - 6n3 +27n2 -54n + 32 là số chẵn
Bài 3: Tìm nghiệm nguyên của phương trình x2 = y ( y+1) ( y+2) ( y+3)
Bài 4 : Cho a là số nguyên tố lớn hơn 3 , CMR : ( a^2 -1 ) chia hết cho 24
bài1 :
a) cho x+y =7.tính M = ( x+y )3 + 2x2 + 4xy + y2
b) cho x-y = -5 . tính N = ( x-y )3 - x2 +2xy -y2