Do \(x^2+x+1>0\) \(\forall x\) nên BPT tương đương:
\(\left(x^2+x\right)\left(x^2+x+1\right)< 42\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x^2+x\right)-42< 0\)
\(\Leftrightarrow-7< x^2+x< 6\)
Ta có \(x^2+x=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}>-7\) \(\forall x\)
Xét \(x^2+x< 6\Leftrightarrow x^2+x-6< 0\Rightarrow-3< x< 2\)
Vậy nghiệm của BPT là \(-3< x< 2\)