Lấy x1;x2<1 sao cho x1<x2
\(A=\dfrac{f\left(x1\right)-f\left(x2\right)}{x_1-x_2}=\left(\dfrac{x_1-2}{x_1+1}-\dfrac{x_2-2}{x_2+1}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2+x_1-2x_2-2-x_1x_2-x_2+2x_1+2}{\left(x_1+1\right)\left(x_2+1\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{3x_1-3x_2}{\left(x_1+1\right)\left(x_2+1\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{3}{\left(x_1+1\right)\left(x_2+1\right)}\)
x1<-1; x2<-1 nên x1+1<0; x2+1<0
=>(x1+1)(x2+1)>0
=>A>0
=>Hàm số đồng biến khi x<-1
Khi x1>-1; x2>-1 thì x1+1>0; x2+1>0
=>(x1+1)(x2+1)>0
=>A>0
=>Hàm số đồng biến khi x>-1
=>Hàm số đồng biến khi x<>-1