\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1-5-x_1^2+4x_2+5}{x_1-x_2}\)
\(=\left(x_1+x_2\right)-4\)
Nếu \(x_1;x_2\in\left(-\infty;;2\right)\) thì \(x_1+x_2< 4\)
=>\(x_1+x_2-4< 0\)
Do đó: f(x) nghịch biến nếu x<2
Nếu \(x_1;x_2\in\left(2;+\infty\right)\) thì \(x_1+x_2>4\)
hay f(x) đồng biến nếu x>2